Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The creep behavior of simple structures with a stress range-dependent constitutive model

Boyle, James (2012) The creep behavior of simple structures with a stress range-dependent constitutive model. Archive of Applied Mechanics, 82 (4). pp. 495-514. ISSN 0939-1533

[img] PDF
Boyle_JT_Pure_The_creep_behaviour_of_simple_structures..._constitutive_model_Jun_2011.pdf - Preprint

Download (286kB)

Abstract

High temperature design remains an issue for many components in a variety of industries. Although finite element analysis for creep is now an accessible tool, most analyses outside the research domain use long standing and very simple constitutive models - in particular based on a power law representation. However, for many years it has been known that a range of materials exhibit different behavours at low and moderate stress levels. Recently studies of the behaviour of high temperature structures with such a stress range dependent constitutive model have begun to emerge. The aim of this paper is to examine further the detailed behaviour of simple structures with a modified power law constitutive model in order to instigate a deeper understanding of such a constitutive model's effect on stress and deformation and the implications for high temperature design. The structures examined are elementary - a beam in bending and a pressurized thick cylinder - but have long been used to demonstrate the basic characteristics of nonlinear creep.