Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Low complexity symbol detection method for multilevel 2-D optical storage based on a linear channel model

Moinian, A. and Stankovic, L. and Honary, B. (2005) Low complexity symbol detection method for multilevel 2-D optical storage based on a linear channel model. Optical Engineering, 44 (10). ISSN 0091-3286

[img]
Preview
PDF
350590.pdf - Final Published Version

Download (807kB) | Preview

Abstract

A symbol detection scheme based on the Viterbi algorithm that simultaneously processes subsets of 2-D data in the presence of Gaussian noise was recently proposed for binary 2-D optical storage (TwoDOS). In the case of multilevel TwoDOS, a straightforward full-fledged maximum likelihood symbol detector, or even the previous Viterbi-based algorithm, is not an ideal solution due to complexity restrictions. We propose a suboptimum low complexity symbol detector, which still performs within the accepted performance bound for optical storage. We describe the procedures involved in designing and developing a practical symbol detection scheme for multilevel TwoDOS by analyzing the signal values generated by a linear channel model in the presence of Gaussian noise. Our proposed detection scheme exploits the properties of the 2-D data format on the disk, and is flexible enough to accommodate performance and complexity restrictions for optical storage applications.