Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Experimental assessment of periodic piezoelectric composite arrays incorporating an anisotropic passive phase

O'Leary, R.L. and Parr, A.C.S. and Hayward, G. and Troge, A. and Pethrick, R.A. (2007) Experimental assessment of periodic piezoelectric composite arrays incorporating an anisotropic passive phase. In: IEEE Ultrasonics Symposium 2006, 2006-10-02 - 2006-10-06.

[img]
Preview
PDF
IEEE_Symposium_2006_O_Leary.pdf

Download (395kB) | Preview

Abstract

This paper discusses the experimental assessment of a number of piezoelectric composite array structures incorporating a novel passive phase exhibiting anisotropic elastic properties. The passive polymer phase has been designed to limit inter-element crosstalk by attenuating lateral propagation across the array aperture. A selection of water coupled linear array coupons, operating with a nominal 400 kHz fundamental thickness mode frequency, has been prepared comprising the novel anisotropic passive phase. As a control, comparisons are made to similarly configured devices employing isotropic filler materials. Scanning laser vibrometry and measurements of electrical impedance characteristic on the array substrate demonstrate that the fundamental thickness mode of the devices configured with anisotropic polymer fillers is not contaminated by parasitic modes of vibration. The reasons for this are explained by considering the dispersion characteristics of the substrate. Water coupled hydrophone measurements of array element directivity; transmit voltage response and subsequently efficiency calculations illustrate that the observed reduction in mechanical cross talk has not been achieved at the expense of element sensitivity. Finally, comparisons between the experimental data and the PZFlex derived array responses are made, with good corroboration demonstrated