Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

The viability and function of primary rat hepatocytes cultured on polymeric membranes developed for hybrid artificial liver devices

Grant, M.H. and Morgan, C. and Henderson, C.J. and Malsch, G. and Seifert, B. and Albrecht, W. and Groth, T. (2005) The viability and function of primary rat hepatocytes cultured on polymeric membranes developed for hybrid artificial liver devices. Journal of Biomedical Materials Research, 73A (3). pp. 367-375. ISSN 0021-9304

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Bioartificial liver devices require membranes to support the function and viability of hepatocytes because they are anchorage-dependent cells. This study investigated the ability of several polymeric membranes to support the functions of primary hepatocyte cultures. Tailor-made membranes were sought by synthesizing acrylonitrile copolymers with different comonomers resulting in ionic, hydrophilic, or reactive functional groups on the polymer surface. Hepatocyte morphology and viability were assessed by confocal microscopy, and function by the content and activities of cytochrome P450, and the expression of glutathione S-transferases. Hydrophilic membranes (polyacrylonitrile and acrylonitrile copolymerized with 2-acrylamino-2-methyl-propane sulfonic acid) were more biocompatible than hydrophobic membranes such as polysulfone. The chemistry of the hydrophilic group was important; amine groups had a deleterious effect on maintenance of the primary hepatocytes. The biocompatibility of hydrophobic membranes was improved by collagen coating. Improving the chemistry of membranes for artificial liver devices will enhance the phenotypic stability of the cells, enabling us to prolong treatment times for patients.