Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Time-delayed autosynchronous swarm control

Biggs, James and Bennet, Derek James and Dadzie, Kokou (2012) Time-delayed autosynchronous swarm control. Physical Review E, 85 (1). ISSN 1539-3755

[img] PDF
Biggs_JD_pure_Time_delayed_auto_synchronous_swarm_control_Dec_2011.pdf - Draft Version

Download (1MB)
[img]
Preview
PDF
Biggs_JD_et_al_Pure_Time_delayed_autosynchronous_swarm_control_10_Jan_2012.pdf - Published Version

Download (1MB) | Preview

Abstract

In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function which can be set to induce a stationary swarm, a rotating swarm with uniform translation and a rotating swarm with a stationary center-of-mass. An analysis of the mean field equations shows that without a spring potential the motion of the center-of-mass is determined explicitly by a multi-valued function. For a non-zero spring potential the swarm converges to a vortex formation about a stationary center-of-mass, except at discrete bifurcation points where the center-of-mass will periodically trace an ellipse. The analytical results defining the behavior of the center-of-mass are shown to correspond with the numerical swarm simulations.