Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Time-delayed autosynchronous swarm control

Biggs, James and Bennet, Derek James and Dadzie, Kokou (2012) Time-delayed autosynchronous swarm control. Physical Review E, 85 (1). ISSN 1539-3755

[img] PDF
Biggs_JD_pure_Time_delayed_auto_synchronous_swarm_control_Dec_2011.pdf - Preprint

Download (1MB)
[img]
Preview
PDF
Biggs_JD_et_al_Pure_Time_delayed_autosynchronous_swarm_control_10_Jan_2012.pdf - Final Published Version

Download (1MB) | Preview

Abstract

In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function which can be set to induce a stationary swarm, a rotating swarm with uniform translation and a rotating swarm with a stationary center-of-mass. An analysis of the mean field equations shows that without a spring potential the motion of the center-of-mass is determined explicitly by a multi-valued function. For a non-zero spring potential the swarm converges to a vortex formation about a stationary center-of-mass, except at discrete bifurcation points where the center-of-mass will periodically trace an ellipse. The analytical results defining the behavior of the center-of-mass are shown to correspond with the numerical swarm simulations.