Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Suspended sediment transport along an idealised tidal embayment: settling lag, residual transport and the interpretation of tidal signals

Pritchard, David (2005) Suspended sediment transport along an idealised tidal embayment: settling lag, residual transport and the interpretation of tidal signals. Ocean Dynamics, 55 (2). pp. 124-136. ISSN 1616-7341

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present semi-analytical solutions for suspended sediment concentration (SSC) and residual sediment transport in a simple mathematical model of a short tidal embayment. These solutions allow us to investigate in some detail the characteristic tidal and semi-tidal variation of SSC and the processes leading to residual sediment transport, including settling and scour lags, the roles of ‘local’ and ‘advective’ contributions, and the presence of internally or externally generated overtides. By interpreting the transport mechanisms in terms of the classic conceptual models of settling lag we clarify how these models may be expressed in mathematical terms. Our results suggest that settling lag is usually a more important process than scour lag, and that a local model which neglects advection may predict the direction of net sediment transport incorrectly. Finally, we discuss our results in the context of other transport processes and morphodynamic feedback.