Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Localization of Bose-Einstein condensates in optical lattices

Franzosi, Roberto and Giampaolo, Salvatore and Illuminati, Fabrizio and Livi, Roberto and Oppo, Gian-Luca and Politi, Antonio (2011) Localization of Bose-Einstein condensates in optical lattices. Central European Journal of Physics, 9 (5). pp. 1248-1254. ISSN 1895-1082

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The dynamics of repulsive bosons condensed in an optical lattice is effectively described by the Bose-Hubbard model. The classical limit of this model, reproduces the dynamics of Bose-Einstein condensates, in a periodic potential, and in the superfluid regime. Such dynamics is governed by a discrete nonlinear Schrödinger equation. Several papers, addressing the study of the discrete nonlinear Schrödinger dynamics, have predicted the spontaneous generation of (classical) breathers in coupled condensates. In the present contribute, we shall focus on localized solutions (quantum breathers) of the full Bose-Hubbard model. We will show that solutions exponentially localized in space and periodic in time exist also in absence of randomness. Thus, this kind of states, reproduce a novel quantum localization phenomenon due to the interplay between bounded energy spectrum and non-linearity.