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Abstract

We suggest an improvement of Wu-Schaback local error bound for radial basis
interpolation by using a polynomial growth function. The new bound is valid with-
out any assumptions about the density of the interpolation centers. It can be useful
for the localized methods of scattered data fitting and for the meshless discretization
of partial differential equations.

1 Introduction

Let X = {x1, . . . ,xN} ⊂ R
d, and let fj, j = 1, . . . , N be real data values associated with

the respective points xj .
Suppose φ : R≥0 → R is a radial basis function, i.e., a positive definite function or

a conditionally positive definite function of order s = 1, 2, . . . on R
d, see e.g. [1]. If φ is

positive definite, we set s = 0. Radial basis interpolant has the form

rφ,`(·) =

N
∑

j=1

ajφ(‖ · −xj‖2) +

m
∑

j=1

bjpj(·), ` ≥ s − 1, (1)

where m = 0 if ` = −1, and m =
(d+`

d

)

otherwise, with {p1, . . . , pm} in the latter case
being a basis for the space Πd

` of d-variate polynomials of total degree `. The coefficients
{aj} and {bj} in (1) are determined from the conditions

rφ,`(xj) = fj, j = 1, . . . , N, (2)

and
N

∑

j=1

aj p(xj) = 0, all p ∈ Πd
` . (3)

This is uniquely solvable (see e.g. [1]) under the assumptions that N ≥ m and X is a
norming set for Πd

` , i.e. for any p ∈ Πd
` , p|X = 0 implies p ≡ 0.
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Radial basis functions are becoming an increasingly popular tool for the approx-
imation of functions, see [1, 17]. The literature studying both their effectiveness in
applications and their remarkable mathematical theory is steadily growing.

In this paper we are interested in local error bounds for the radial basis interpolation
in the form going back to [18]. We introduce an error bound where a polynomial
growth function explicitly enters the estimate, see (4). In contrast to the standard error
estimates in terms of fill distance, our bound is valid without any assumptions about
the density of the interpolation centers in the domain of interest. The standard bounds
can be easily deduced from (4), avoiding complicated techniques of ‘local polynomial
reproduction.’

The estimate (4) is of special interest for the localized methods of data fitting with
radial basis functions, in particular for the design of effective two stage methods using
either multivariate splines [15], [3]–[7] or a partition of unity [8, 10, 16].

Another potential application area is the meshless discretization of partial differential
equations, where (4) shows how the error bound is influenced by the locations for the
centers of radial basis functions, and this can help choosing them in an optimal way.

We present the main result of the paper in Section 2, and its proof in Section 4. In
Section 3 we consider various estimates of the growth function. In particular, we show
that the error bounds in terms of the fill distance can be obtained by appropriately
estimating the growth function in (4). We also discuss a computable estimate of the
growth function for small subsets of data, which is related to the error bounds for local
discrete least squares polynomials introduced in [2].

2 Error Bound

For any non-empty Y ⊂ R
d, we denote by ρq(x,Y) the growth function of Πd

q with
respect to Y,

ρq(x,Y) := max{|p(x)| : p ∈ Πd
q , ‖p|Y‖∞ ≤ 1}, x ∈ R

d.

Clearly, ρq(x,Y) is finite for all x ∈ R
d if Y is a norming set for Πd

q . Otherwise,

ρq(x,Y) = ∞ for all x /∈ Y. Note that in the case when #Y = dimΠd
q , ρq(x,Y)

coincides with the standard Lebesgue function for polynomial interpolation with knots
in Y.

We set
Fφ = {f ∈ L2(R

d) : ‖f‖φ < ∞},

where
‖f‖φ := (2π)−d/2

∥

∥

∥
f̂/

√

Φ̂
∥

∥

∥

L2(Rd)
, f ∈ L2(R

d),

with Φ(·) = φ(‖ · ‖2), and f̂ denotes the generalized Fourier transform. The latter is
given for any f ∈ L1(R

d) by the usual formula

f̂(x) = (2π)−d/2

∫

Rd

e−ix·tf(t)dt, x ∈ R
d,

and it is defined in a distributional sense for certain classes of functions non-integrable
on R

d, see [17, Section 8.2].
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Finally, E(f,S)C(G), where G ⊂ R
d, denotes the error of the best uniform approxi-

mation to f from a linear space S of functions on G,

E(f,S)C(G) := inf
g∈S

‖f − g‖C(G).

Here C(G) denotes the space of continuous functions on G, and ‖f‖C(G) := maxx∈G |f(x)|.
Our main result is the following error bound.

Theorem 1. Assume that fj = f(xj), j = 1, . . . , N , for a function f ∈ Fφ. Then for

any non-empty Y ⊆ X, and any q ≥ max{`, 0}, we have

|f(x) − rφ,`(x)| ≤
(

1 + ρq(x,Y)
) √

E(Φ,Πd
q)C(Bx,Y) ‖f‖φ, x ∈ R

d, (4)

where Bx,Y denotes the ball in R
d with center 0 and radius diam({x} ∪Y).

We postpone the proof of this theorem to Section 4.
Standard error bounds for the radial basis interpolation, e.g. those in terms of fill

distance can be obtained from (4) by appropriately estimating the growth function
ρq(x,Y). We discuss these and other estimates for ρq(x,Y) in Section 3.

An interesting feature of (4) is that it can be applied in various ways resembling
classical notions of h-, p- and spectral convergence. Suppose we consider an approxima-
tion process, where f is interpolated by rφ,` with X becoming denser and denser in Ω.
Let M be a positive constant. If we fix q and choose Y such that ρq(x,Y) ≤ M and
h = diam({x} ∪ Y) is as small as possible, then we arrive at h-convergence. Indeed,
E(Φ,Πd

q)C(Bx,Y) will decay as a certain power of h depending on the smoothness of Φ.
To obtain p-convergence, we fix a neighborhood U of x, take Y = X∩U , and choose q as
large as possible with ρq(x,Y) ≤ M . As X becomes denser, larger q can be chosen, and
E(Φ,Πd

q)C(Bx,Y) can be bounded as a certain power of 1/q if Φ has finite smoothness,
or it will decay exponentially if Φ is an analytic function.

It is remarkable that both h- and p-convergence happen for the same approximation
method (1). Indeed, the estimate (4) is correct for all q and Y, and we do not need to
know their optimal values in practice. This compares favorably to piecewise polynomial
methods, where specific algorithms are needed to design partitions of Ω and choose
appropriate polynomial degrees for either h- or p- or, say, hp-convergence.

3 Estimates of Growth Function

In this section we discuss various estimates for ρq(x,Y), in particular those that lead to
the standard error bounds for radial basis interpolation on bounded domains [1, 17]. We
emphasise that the estimates for ρq(x,Y) are not only of theoretical interest. Indeed,
whenever we can control the placement of the data sites X, the error bounds will be bet-
ter if we manage to prevent ρq(x,Y) from blowing up for largest possible q and smallest
possible Y. Such a control is available in localized data fitting, where the algorithms
choose appropriate subsets of data to build local approximations. Another important
situation where one controls the placement of the data sites is the discretization of
partial differential equations.
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Clearly, ρq(x,Y) ≥ 1. This lower bound is achieved when q = 0 as we have
ρ0(x,Y) = 1 for any x ∈ R

d. This simplest version of (4) has been discussed in [4]. We
also have ρ1(x,Y) = 1 if x belongs to the convex hull of Y. This fact, together with
Theorem 1, can be used to prove error bounds similar to those of [13]. Unfortunately,
in general there are no such simple estimates for ρq(x,Y), q ≥ 2.

Assuming that we are only interested in x in a bounded domain Ω ⊂ R
d such that

X ⊂ Ω, we observe that the diameter of the set {x,x1, . . . ,xN} is less or equal to the
diameter dΩ of Ω. Since we can always take Y = X, it follows from Theorem 1 that

‖f − rφ,`‖C(Ω) ≤
(

1 + ρq(Ω,X)
) √

E(Φ,Πd
q)C(BdΩ

) ‖f‖φ, (5)

where
ρq(Ω,X) := max{‖p‖C(Ω) : p ∈ Πd

q , ‖p|X‖∞ ≤ 1},

and Br denotes the ball in R
d with center 0 and radius r. Note that ρq(Ω,X) is closely

related to the norming constant νq(Ω,X) [9] defined by

νq(Ω,X) := min{‖p|X‖∞ : p ∈ Πd
q , ‖p‖C(Ω) = 1}.

Clearly,
ρq(Ω,X) = ν−1

q (Ω,X). (6)

Upper bounds for ρq(Ω,X) can be obtained under certain assumptions on the fill

distance h(Ω,X) of X with respect to Ω, where

h(Ω,X) := sup
y∈Ω

inf
x∈X

‖y − x‖2.

In the case when Ω is a cube in R
d, a result from [11] can be used. Its consequence is

that h(Ω,X) < a
2γd(q+1) implies ρq(Ω,X) ≤ e2dγd(q+1), where a is the sidelength of the

cube, and γd is defined recursively as γ1 = 2, γd = 2d(1 + γd−1), d ≥ 2, see [11, Lemma
1]. Another approach originated in [9] is based on an elegant application of Markov
inequality for polynomials. It can be used on any domains satisfying the interior cone
condition. For example, in the case when Ω is a ball of radius r in R

d, it can be shown

that h(Ω,X) ≤
√

3r
4(2+

√
3)q2

implies ρq(Ω,X) ≤ 2, see [17, Corollary 3.11].

These upper bounds on ρq(Ω,X), combined with (4), can be used to obtain the
standard error bounds in terms of fill distance, such as those in [1, Theorem 5.5], [17,
Section 11.3] or the spectral convergence orders for multiquadric and Gaussian in [17,
Section 11.4]. Indeed, the second factor in (4) can be estimated following the same
argumentation as e.g. in the proofs in [17, Chapter 11]. Comparing to the standard
method of proof, the approach based on (4) is simpler because it does not require the
complicated techniques of local polynomial reproduction [17, Chapter 3].

Despite their theoretical significance, the bounds on ρq(Ω,X) in terms of fill distance
do not seem to be of much practical use. Consider, for example, the case q = 2 in R

2.
For the unit square the assumption h(Ω,X) < a

2γd(q+1) of [11] becomes h(Ω,X) < 1/72.

Obviously, one can place at least 362 = 1296 disjoint circles of radius 1/36 inside the unit
square. Since h(Ω,X) < 1/72, each of these circles must contain a point in X, which

implies that #X ≥ 1296. Similarly, if Ω is a circle of radius 1, then h(Ω,X) ≤
√

3r
4(2+

√
3)q2
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becomes h(Ω,X) ≤ 0.029 for q = 2, and a crude lower bound is #X ≥ 594. Recall that
dimΠ2

2 is only 6, which suggests that a set X consisting of 6 points in good position
should have a reasonably bounded ρ2(Ω,X). In practice the growth function ρ2(x,X)
with respect to great many datasets consisting of, say, 10 points spread out near x

will be reasonably small. Of course, ρ2(x,X) may be large if the point constellation is
unfortunate, i.e. if X is close to a subset of a conic section. However, it would hardly
be practical, especially for a localized method of data fitting, to use hundreds of points
instead of just several in order to avoid these bad constellations. Instead, one needs to
know the exact value of ρq(Ω,X) or a good estimate for it, as an indicator of whether
the points in X are in good position.

In a localized method, the estimate (5) is applied to a number of small subdomains
ωi, i = 1, . . . , I, of the original domain Ω. Knowing ρq(ωi,X), one can sensibly decide
whether more distant points should be invoked to improve a local approximation in ωi,
or some points can be discarded to save computation cost without causing significant
damage to the approximation quality.

A computable estimate for ρq(Ω,X) in the case when #X is small is provided by
the reciprocal of the minimum singular value of the polynomial collocation matrix

PX :=







p1(x1) . . . pm(x1)
...

...
p1(xN ) . . . pm(xN )






.

More precisely, in view of (6) it follows from [2, Eq. (2.7)] that

K1σ
−1
min(PX) ≤ ρq(Ω,X) ≤ K2

√

#Xσ−1
min(PX), (7)

where σmin(PX) is the minimum singular value of the matrix PX, and K1,K2 are positive
constants such that

K1‖a‖2 ≤ ‖

m
∑

j=1

ajpj‖C(Ω) ≤ K2‖a‖2

for all coefficient vectors a = (a1, . . . , am)T ∈ R
m.

Note that (7) remains valid if ρq(Ω,X) is replaced with the norm of the polynomial
least squares operator, see [2]. Therefore, the quality of local least squares polynomial
approximations can be judged on the basis of the size of σmin(PX), which has been
exploited in the data fitting method of [6].

4 Proof of Theorem 1

We first prove the following two lemmas, and then proceed to prove the theorem.

Lemma 2. Let X be a finite dimensional vector space and X ∗ its dual. Suppose that

X∗ = span {λ1, . . . , λk} for some λ1, . . . , λk ∈ X∗. Then for any functional λ ∈ X∗ we

have

max
x∈X

|λi(x)|≤1, i=1,...,k

|λ(x)| = min
c∈Rk

λ=
Pk

i=1
ciλi

k
∑

i=1

|ci|. (8)
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Proof. Let us turn X into a normed space by introducing the norm ‖x‖X = maxi |λi(x)|.
Then the left hand side of (8) is ‖λ‖X∗ . Obviously, ‖λi‖X∗ ≤ 1, i = 1, . . . , k, which
implies ‖λ‖X∗ ≤

∑k
i=1 |ci| for any c = (c1, . . . , ck) ∈ R

k such that λ =
∑k

i=1 ciλi. If
dimX = k, then {λ1, . . . , λk} is a basis for X∗, and (8) is easily recognized as the duality
relation for ‖λ‖X∗ . In general, similar to [9, Proposition 2] and [12, Proposition 4.1], we
consider the linear “sampling operator” T : X → R

k, where T (x) = (λ1(x), . . . , λk(x)).
Let X̃ = T (X) ⊂ R

k. Since {λ1, . . . , λk} is a spanning set for X∗, T is injective and
hence T−1 : X̃ → X exists. Moreover, the functionals λi ◦ T−1, i = 1, . . . , k, on X̃ are
the restrictions of coordinate projections Λi, i = 1, . . . , k on R

k, and the norm ‖ · ‖X̃

on X̃ defined by ‖x̃‖X̃ = ‖T−1(x̃)‖X coincides with the norm ‖ · ‖∞ induced from R
k.

Therefore, λ̃ := λ ◦ T−1, as a linear functional on X̃ with ‖λ̃‖X̃∗ = ‖λ‖X∗ , is extendible
by Hahn-Banach theorem to a linear functional Λ on R

k with norm ‖Λ‖1 = ‖λ‖X∗ . Now,
there exists a unique representation Λ =

∑k
i=1 c̃iΛi, c̃i ∈ R, with ‖Λ‖1 =

∑k
i=1 |c̃i|, and,

hence, λ =
∑k

i=1 c̃iλi and ‖λ‖X∗ =
∑k

i=1 |c̃i|.

Lemma 3. Let x,x1, . . . ,xn ∈ R
d and c1, . . . , cn ∈ R. Suppose that

p(x) =

n
∑

j=1

cjp(xj) for all p ∈ Πd
q . (9)

Then for all p ∈ Πd
q we have

p(0) − 2

n
∑

j=1

cj p(x− xj) +

n
∑

j,k=1

cjck p(xj − xk) = 0. (10)

Proof. If p ∈ Πd
q and y ∈ R

d, then both p(· − y) and p(y − ·) belong to Πd
q , and it

follows from (9) that

p(x − y) =

n
∑

j=1

cjp(xj − y), p(y − x) =

n
∑

j=1

cjp(y − xj).

By taking y = x in the second identity and y = xk in the first, we get

p(0) =
n

∑

j=1

cjp(x − xj), p(x − xk) =
n

∑

j=1

cjp(xj − xk), k = 1, . . . , n,

and (10) is easily verified.

Proof of Theorem 1. Let x ∈ R
d \ X. As shown in [18] (see also [17]),

|f(x) − rφ,`(x)| ≤ P (x) ‖f‖φ, (11)

with P (x) being the power function that satisfies

P (x) = min{
√

F (c) : c ∈ R
N , p(x) =

N
∑

j=1

cj p(xj) for all p ∈ Πd
`}, (12)
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where for c = (c1, . . . , cN ) ∈ R
N ,

F (c) := Φ(0) − 2

N
∑

j=1

cjΦ(x − xj) +

N
∑

j,k=1

cjckΦ(xj − xk).

We now take a q ≥ ` and choose any subset Y ⊆ X such that ρq(x,Y) < ∞.
Assume without loss of generality that Y = {x1, . . . ,xn}, where n ≤ N . Clearly, the
condition ρq(x,Y) < ∞ holds if and only if Y is a norming set for Πd

q . Therefore

the mapping δY : Πd
q → R

n defined by δY(p) = p|Y is injective, and its image has

dimension
(d+q

d

)

= dimΠd
q . This implies that among the point evaluation functionals

δxj
: Πd

q → R, j = 1, . . . , n, that form the components of δY, there are
(d+q

d

)

that are

linearly independent over Πd
q . Therefore, {δxj

}n
j=1 span the dual space (Πd

q)
∗. Now, the

linear functional δx defined by δx(p) = p(x) is also in (Πd
q)

∗, and hence it can be written

as a linear combination of δxj
, j = 1, . . . , n. We conclude that there exist vectors c ∈ R

N

satisfying

p(x) =
n

∑

j=1

cj p(xj) for all p ∈ Πd
q (13)

and
cj = 0, for all j = n + 1, . . . , N. (14)

Let us fix for a moment one such c ∈ R
N . In view of (13), Lemma 3 implies that for

any p ∈ Πd
q ,

p(0) − 2
n

∑

j=1

cj p(x− xj) +
n

∑

j,k=1

cjck p(xj − xk) = 0.

Since Πd
` ⊂ Πd

q , we obtain by taking into account (14),

F (c) = [Φ(0) − p(0)] − 2

n
∑

j=1

cj [Φ(x− xj) − p(x − xj)]

+

n
∑

j,k=1

cjck [Φ(xj − xk) − p(xj − xk)]

≤
(

1 +
n

∑

j=1

|cj |
)2

‖Φ − p‖C(Bx,Y).

Since p ∈ Πd
q is arbitrary, it follows that

F (c) ≤
(

1 +

n
∑

j=1

|cj |
)2

E(Φ,Πd
q)C(Bx,Y )

for any c ∈ R
N such that (13) and (14) hold.

By Lemma 2, where we take X = Πd
q , λ = δx (point evaluation at x), λj = δxj

,

j = 1, . . . , n, there exist c̃1, . . . , c̃n ∈ R such that p(x) =
∑n

j=1 c̃j p(xj) for all p ∈ Πd
q ,

and

ρq(x,Y) = max{|p(x)| : p ∈ Πd
q , ‖p|Y‖∞ ≤ 1} =

n
∑

j=1

|c̃j |.
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Thus, by setting c̃ = (c̃1, . . . , c̃n, 0, . . . , 0) ∈ R
N , we arrive at

F (c̃) ≤
(

1 + ρq(x,Y)
)2

E(Φ,Πd
q)C(Bx,Y),

and (4) follows by (11) and (12).
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