Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Automatically detecting neighbourhood constraint interactions using comet

Andrew, A. (2008) Automatically detecting neighbourhood constraint interactions using comet. In: Proceedings of the CP 2008 Doctoral Programme. University of New South Wales, pp. 7-12.

[img]
Preview
PDF
neighbourhood_constraint.pdf - Accepted Author Manuscript

Download (72kB) | Preview

Abstract

The major benet of using events as the basis for our detection system is the clean separation between the neighbourhoods and detector which we can achieve. The detector simply iterates over a set of Neighbourhood objects and checks each for interactions. The acceptance function for the neighbourhood is set to accept any tness. For purposes of detecting an interaction it does not matter whether a move reduces or increases the constraint violations; both indicate that a relationship exists. The simulation is performed in two stages. Starting from a randomly created initial solution a random move from the neighbourhood is chosen, often this will lead to a constraint change and prevent the need for further exploration. For some constraints the chance of randomly selecting a move which would violate it is fairly low and so a more rigourous search is required. If the initial move has not found any interaction then the detector explores every neighbouring state from the current position. If at any stage a change of the constraint violations is detected then the exploration is stopped.