Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Almost sure exponential stability of the Euler–Maruyama approximations for stochastic functional differential equations

Wu, Fuke and Mao, Xuerong and Kloeden, Peter E. (2011) Almost sure exponential stability of the Euler–Maruyama approximations for stochastic functional differential equations. Random Operator and Stochastic Equations, 19 (2). pp. 105-216. ISSN 0926-6364

[img] PDF
2Wu_Mao_Kloeden.pdf - Preprint

Download (203kB)

Abstract

By the continuous and discrete nonnegative semimartingale convergence theorems, this paper investigates conditions under which the Euler–Maruyama (EM) approximations of stochastic functional differential equations (SFDEs) can share the almost sure exponential stability of the exact solution. Moreover, for sufficiently small stepsize, the decay rate as measured by the Lyapunov exponent can be reproduced arbitrarily accurately.