Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Convergence rate of numerical solutions to SFDEs with jumps

Bao, Jianhai and Bottcher, Bjorn and Mao, Xuerong and Yuan, Chenggui (2011) Convergence rate of numerical solutions to SFDEs with jumps. Journal of Computational and Applied Mathematics, 236 (2). pp. 119-131. ISSN 0377-0427

[img] PDF
6Bao_Bottcher_Mao_Yuan.pdf - Preprint

Download (314kB)

Abstract

In this paper, we are interested in numerical solutions of stochastic functional differential equations with jumps. Under a global Lipschitz condition, we show that the pth-moment convergence of Euler–Maruyama numerical solutions to stochastic functional differential equations with jumps has order 1/p for any p ≥ 2. This is significantly different from the case of stochastic functional differential equations without jumps, where the order is 1/2 for any p ≥ 2. It is therefore best to use the mean-square convergence for stochastic functional differential equations with jumps. Moreover, under a local Lipschitz condition, we reveal that the order of mean-square convergence is close to 1/2, provided that local Lipschitz constants, valid on balls of radius j, do not grow faster than log j.