Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Generalised theory on asymptotic stability and boundedness of stochastic functional differential equations

Luo, Qi and Mao, Xuerong and Shen, Yi (2011) Generalised theory on asymptotic stability and boundedness of stochastic functional differential equations. Automatica, 47. pp. 2075-2081. ISSN 0005-1098

[img] PDF
4Luo_Mao_Shen.pdf - Preprint

Download (525kB)

Abstract

Asymptotic stability and boundedness have been two of most popular topics in the study of stochastic functional differential equations (SFDEs) (see e.g. Appleby and Reynolds (2008), Appleby and Rodkina (2009), Basin and Rodkina (2008), Khasminskii (1980), Mao (1995), Mao (1997), Mao (2007), Rodkina and Basin (2007), Shu, Lam, and Xu (2009), Yang, Gao, Lam, and Shi (2009), Yuan and Lygeros (2005) and Yuan and Lygeros (2006)). In general, the existing results on asymptotic stability and boundedness of SFDEs require (i) the coefficients of the SFDEs obey the local Lipschitz condition and the linear growth condition; (ii) the diffusion operator of the SFDEs acting on a C2,1-function be bounded by a polynomial with the same order as the C2,1-function. However, there are many SFDEs which do not obey the linear growth condition. Moreover, for such highly nonlinear SFDEs, the diffusion operator acting on a C2,1-function is generally bounded by a polynomial with a higher order than the C2,1-function. Hence the existing criteria on stability and boundedness for SFDEs are not applicable andwesee the necessity to develop new criteria. Our main aim in this paper is to establish new criteria where the linear growth condition is no longer needed while the up-bound for the diffusion operator may take a much more general form.