Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Microwave devices with helically corrugated waveguides

Bratman, V.L. and Cross, Adrian and Denisov, G.G. and Phelps, Alan and Samsonov, S.V. (2005) Microwave devices with helically corrugated waveguides. In: Quasi-optical control of intense microwave transmission. NATO science series, series II: mathematics, physics and chemistry . Springer, Dordrecht, pp. 105-114. ISBN 9781402036361

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Helical corrugation of the inner surface of an oversized circular waveguide provides very flexible dispersion characteristic of an eigenwave. Under certain corrugation parameters, the eigenwave can possess a sufficiently high and almost constant group velocity over a wide frequency band in the region of close-to-zero axial wavenumber. This makes it attractive for broadband gyro-TWTs and gyro-BWOs with reduced sensitivity to electron velocity spread. Another set of parameters ensures an operating wave with a strong frequency dependant group velocity over a frequency band, which is sufficiently separated from any cutoffs. Such wave dispersion is favourable for frequency-chirped pulse compression at very high power levels. An overview of experiments on the helical-waveguide gyro-devices and the pulse compressor is presented.