Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Viability studies of optically trapped T-cells

McAlinden, Niall and Glass, David Gavin and Millington, Owain and Wright, Amanda (2011) Viability studies of optically trapped T-cells. In: Optical Trapping and Optical Micromanipulation VIII. SPIE.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We present a viability study of optically trapped live T cell hybridomas. T cells form an important part of the adaptive immune response system which is responsible for fighting particular pathogens or diseases. The cells of interest were directly trapped by a laser operating at a wavelength of 1064 nm and their viability measured as a function of time. Cell death was monitored using an inverted fluorescent microscope to observe the uptake by the cell of the fluorescent dye propidium iodide. Studies were undertaken at various laser powers and beam profiles. There is a growing interest in optically trapping immune cells and this is the first study that investigates the viability of a T cell when trapped using a conventional optical trapping system. In such experiments it is crucial that the T cell remains viable and trapping the cell directly means that any artefacts due to a cell-bead interface are removed. Our motivation behind this experiment is to use optical tweezers to gain a greater understanding of the interaction forces between T cells and antigen presenting cells. Measuring these interactions has become important due to recent theories which indicate that the strength of this interaction may underlie the activation of the T-cell and subsequent immune response.