Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Viability studies of optically trapped T-cells

McAlinden, Niall and Glass, David Gavin and Millington, Owain and Wright, Amanda (2011) Viability studies of optically trapped T-cells. In: Optical Trapping and Optical Micromanipulation VIII. SPIE.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We present a viability study of optically trapped live T cell hybridomas. T cells form an important part of the adaptive immune response system which is responsible for fighting particular pathogens or diseases. The cells of interest were directly trapped by a laser operating at a wavelength of 1064 nm and their viability measured as a function of time. Cell death was monitored using an inverted fluorescent microscope to observe the uptake by the cell of the fluorescent dye propidium iodide. Studies were undertaken at various laser powers and beam profiles. There is a growing interest in optically trapping immune cells and this is the first study that investigates the viability of a T cell when trapped using a conventional optical trapping system. In such experiments it is crucial that the T cell remains viable and trapping the cell directly means that any artefacts due to a cell-bead interface are removed. Our motivation behind this experiment is to use optical tweezers to gain a greater understanding of the interaction forces between T cells and antigen presenting cells. Measuring these interactions has become important due to recent theories which indicate that the strength of this interaction may underlie the activation of the T-cell and subsequent immune response.