Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Domestic ventilation rates, indoor humidity and dust mite allergens : are our homes causing the asthma pandemic?

Howieson, S G and Lawson, A and McSharry, C and Morris, G and McKenzie, E and Jackson, J (2003) Domestic ventilation rates, indoor humidity and dust mite allergens : are our homes causing the asthma pandemic? Building Services Engineering Research and Technology, 24 (3). pp. 137-147.

[img]
Preview
Text (strathprints003682)
strathprints003682.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

This paper is concerned with historical changes in domestic ventilation rates, relative humidity and the associated risk of house dust mite colonization. A controlled trial evaluated allergen and water vapour control measures on the level of house dust mite (HDM) Der p1 allergen and indoor humidity, concurrently with changes in lung function in 54 subjects who completed the protocol. Mechanical heat recovery ventilation units significantly reduced moisture content in the active group, while HDM allergen reservoirs in carpets and beds were reduced by circa 96%. Self reported health status confirmed a significant clinical improvement in the active group. The study can form the basis for assessing minimum winter ventilation rates that can suppress RH below the critical ambient equilibrium humidity of 60% and thus inhibit dust mite colonization and activity in temperate and maritime in' uenced climatic regions.