Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Domestic ventilation rates, indoor humidity and dust mite allergens : are our homes causing the asthma pandemic?

Howieson, S.G. and Lawson, Alan and McSharry, C. and Morris, G. and McKenzie, E. and Jackson, J. (2003) Domestic ventilation rates, indoor humidity and dust mite allergens : are our homes causing the asthma pandemic? Building Services Engineering Research and Technology, 24 (3). pp. 137-147.

[img]
Preview
PDF (strathprints003682.pdf)
strathprints003682.pdf

Download (1MB) | Preview

Abstract

This paper is concerned with historical changes in domestic ventilation rates, relative humidity and the associated risk of house dust mite colonization. A controlled trial evaluated allergen and water vapour control measures on the level of house dust mite (HDM) Der p1 allergen and indoor humidity, concurrently with changes in lung function in 54 subjects who completed the protocol. Mechanical heat recovery ventilation units significantly reduced moisture content in the active group, while HDM allergen reservoirs in carpets and beds were reduced by circa 96%. Self reported health status confirmed a significant clinical improvement in the active group. The study can form the basis for assessing minimum winter ventilation rates that can suppress RH below the critical ambient equilibrium humidity of 60% and thus inhibit dust mite colonization and activity in temperate and maritime in' uenced climatic regions.