Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Using surface and interface optics to probe the capping, with amorphous Si, of Au atom chains grown on vicinal Si(111)

McAlinden, N and McGilp, J F (2009) Using surface and interface optics to probe the capping, with amorphous Si, of Au atom chains grown on vicinal Si(111). Journal of Physics: Condensed Matter, 21 (47).

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The distinct optical signatures of aligned single and double Au atom chain structures, grown on vicinal Si(111) substrates, have been identified using reflectance anisotropy spectroscopy (RAS). Deposition of 0.04 monolayers (ML) of amorphous Si (a-Si) at room temperature perturbs the anisotropic optical response of the double chain structure. By one third of a monolayer, no significant optical anisotropy associated with the chains remains. No anisotropic response re-emerges at higher coverages, up to 4.6 nm (14.5 ML) where there is recent evidence that the crystal structure of the double chain phase is maintained under the cap. The RAS results show that the anisotropic properties of the phase are quenched by a-Si adsorption, even though the crystal structure of the capped phase appears to be preserved.