Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics

Nicholls, William and Borg, Matthew Karl and Lockerby, Duncan A. and Reese, Jason (2012) Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics. Microfluidics and Nanofluidics, 12 (1-4). pp. 257-264. ISSN 1613-4982

[img] PDF
Reese_JM_Pure_Water_transport_through_7.7_carbon_nanotubes_of_different_lengths_using_molecular_dynamics_Jan_2011.pdf - Preprint

Download (398kB)

Abstract

Non-equilibrium molecular dynamics simulations are used to investigate water transport through (7,7) CNTs, examining how changing the CNT length affects the internal flow dynamics. Pressure-driven water flow through CNT lengths ranging from 2.5 to 50 nm is simulated. We show that under the same applied pressure difference an increase in CNT length has a negligible effect on the resulting mass flow rate and fluid flow velocity. Flow enhancements over hydrodynamic expectations are directly proportional to the CNT length. Axial profiles of fluid properties demonstrate that entrance and exit effects are significant in the transport of water along CNTs. Large viscous losses in these entrance/exit regions lead into central “developed” regions in longer CNTs where the flow is effectively frictionless.