Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Multi-level converter based VSC transmission operating under fault AC conditions

Xu, L. and Andersen, B. and Cartwright, P. (2005) Multi-level converter based VSC transmission operating under fault AC conditions. IEE Proceedings Generation Transmission and Distribution, 152 (2). pp. 185-193. ISSN 1350-2360

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A study of a floating-capacitor (FC) multilevel-converter-based VSC transmission system operating under unbalanced AC conditions is presented. The control strategy is based on the use of two controllers, i.e. a main controller, which is implemented in the synchronous d-q frame without involving positive and negative sequence decomposition, and an auxiliary controller, which is implemented in the negative sequence d-q frame with the negative sequence current extracted. Automatic power balancing during AC fault is achieved without communication between the two converters by automatic power modulation on the detection of abnormal DC voltages. The impact of unbalanced floating capacitor voltages of the FC converter on power devices is described. A software-based method, which adds square waves whose amplitudes vary with the capacitor voltage errors to the nominal modulation signals for fast capacitor voltage balancing during faults, is proposed. Simulations on a 300 kV DC, 300 MW VSC transmission system based on a four-level FC converter show good performance of the proposed control strategy during unbalanced conditions caused by single-phase to ground fault.