Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

A comparison of sprinting kinematics on two types of treadmill and over-ground

McKenna, M. and Riches, P.E. (2007) A comparison of sprinting kinematics on two types of treadmill and over-ground. Scandinavian Journal of Medicine and Science in Sports, 17 (6). pp. 649-655. ISSN 0905-7188

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Conventionally motorized treadmills elicit different sprinting kinematics to the over-ground condition. Treadmills powered by a torque motor have been used to assess sprinting power; yet, the kinematics of sprinting on the torque treadmill are unknown. This study compares the sprinting kinematics, during the constant velocity phase, between a conventional treadmill, a torque treadmill and the over-ground condition to assess the suitability of each treadmill for sprinting studies and training. After familiarization, 13 recreationally active males performed multiple sprints at various experimental settings on each surface. Ninety sprints, which attained mean velocities over 7.0 m/s, had their lower-body sagittal plane joint angles during ground contact captured at 250 Hz. These data were low-pass filtered at 10 Hz, and compared with respect to surface, subject and velocity using an ANCOVA statistical model. Sprinting on the conventional treadmill elicited a longer ground contact time, a longer braking phase, a more extended knee at foot strike and a faster extending hip than the torque treadmill and over-ground (all P<0.05). The torque treadmill obtained an equivalent sprinting technique to the over-ground condition, with the exception of a less extended hip at toe-off, suggesting that it is more appropriate for laboratory sprinting analyses and training than the conventional treadmill.

Item type: Article
ID code: 3670
Keywords: sprinting kinematics, treadmill, sprinting studies, ANCOVA statistical model, Physiology
Subjects: Science > Physiology
Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences
Faculty of Engineering > Bioengineering
Related URLs:
Depositing user: Strathprints Administrator
Date Deposited: 12 Jul 2007
Last modified: 12 Mar 2012 10:39
URI: http://strathprints.strath.ac.uk/id/eprint/3670

Actions (login required)

View Item