Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Is the coactivation of biceps femoris during isometric knee extension affected by adiposity in healthy young humans?

De Vito, G. and McHugh, D. and Macaluso, A. and Riches, P.E. (2003) Is the coactivation of biceps femoris during isometric knee extension affected by adiposity in healthy young humans? Journal of Electro - myography and Kinesiology, 13 (5). pp. 425-431. ISSN 1050-6411

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This study aimed to verify if the level of biceps femoris antagonist activity measured during isometric knee extension was affected by the individual degree of adiposity in 14 young healthy subjects of both genders aged between 18 and 24. Surface EMG signals were recorded from the biceps femoris muscle of the dominant leg during isometric knee extension at three levels of voluntary contraction: maximum (MVC), 80% MVC and 200 N, respectively. In addition, whole-body percentage of fat, volume of the thigh and skinfold thickness below the electrodes were achieved. Biceps femoris coactivation values were: 28.5±17.9%, 30.9±17.7% and 25.3±17.5% for MVC, 80% MVC and 200N trials, respectively (NS). Neither the whole-body percentage of fat nor the skinfold thickness influenced percentage coactivation, irrespective of the intensity of contraction. However, an increase in the whole-body percentage of fat showed a tendency to augment the biceps femoris coactivation (PI=0.079; PII=0.575). No differences in coactivation were observed between genders. In addition, the duration of contraction did not affect the level of coactivation.