Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Co-remediation of hexavalent chromium and arsenic polluted groundwater using crab processing waste products

Keenan, Helen and Torrance, Keith (2010) Co-remediation of hexavalent chromium and arsenic polluted groundwater using crab processing waste products. In: SEGH 2010, 2010-06-28 - 2010-07-03. (Unpublished)

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Groundwater samples containing elevated concentrations of Cr(VI) and As(III) were collected from boreholes in the Glasgow area that were known to contain waste in-fill from chromite ore processing (COPR). As Cr(VI)pollution is usually addressed by chemical reduction to the less mobile and toxic Cr(III) species, there is concern whether this will cause other contaminants such as arsenic to become mobile from the reduction of the less-mobile As (V) to the more toxic As (III). Chromium speciation was determined using ICP-MS and colourimetry, then compared to analysis after laboratory-scale remediation by passing samples through columns containing mixtures of sorbants, including crab processing waste, chitosan and zero-valent iron under different redox conditions. Arsenic speciation was determined by IC-ICP-MS and anodic stripping voltammetry and monitored for each experiment. Results are presented on the effectiveness of different sorbants to reduce the mobility of Cr(VI) as an alternative to chemical reduction, and rated on consequential arsenic mobility.