Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Three-dimensional formation flight for UAV using bifurcating velocity field

Suzuki, Masayuki and Uchiyama, Kenji and Bennet, Derek James and McInnes, Colin (2011) Three-dimensional formation flight for UAV using bifurcating velocity field. Journal of the Japan Society of Aeronautical and Space Sciences, 59 (693). pp. 259-265.

[img] Microsoft Word
Bennet_DJ_McInnes_CR_Pure_Three_dimensional_formation_flight_for_UAV_using_bifurcating_velocity_field_Dec_2011.doc - Preprint

Download (535kB)

Abstract

This paper attempts to design a guidance law using bifurcating potential fields and velocity field for a swarm of autonomous Unmanned Aerial Vehicles (UAVs). We consider an autonomous flight system that can create different three-dimensional swarming patterns so as to guarantee obstacle and vehicle collision avoidance. The guidance law, which is derived from a steering and repulsive potential field, can express variable geometric patterns for a formation flight of UAVs. The system can transition between different formation patterns by way of a simple parameter change. We also describe the design method for potential field that is flexible enough to respond to a variety of UAV performance and mission. Numerical simulation is performed to verify the validity of the proposed guidance law.