Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A dynamic modelling environment for the evaluation of wide area protection systems

Abdulhadi, I.F. and Tumilty, Ryan and Burt, Graeme and Mcdonald, James (2008) A dynamic modelling environment for the evaluation of wide area protection systems. In: 43rd International Universities Power Engineering Conference, 2008. UPEC 2008. Proceedings. IEEE, New York, pp. 1-5. ISBN 9781424432943

[img]
Preview
PDF (A dynamic modelling environment for the evaluation of wide area protection systems)
04651494.pdf - Final Published Version

Download (661kB) | Preview

Abstract

This paper introduces the concept of dynamic modelling for wide area and adaptive power system protection. Although not limited to these types of protection schemes, these were chosen due to their potential role in solving a multitude of protection challenges facing future power systems. The dynamic modelling will be implemented using a bespoke simulation environment. This tool allows for a fully integrated testing methodology which enables the validation of protection solutions prior to their operational deployment. Furthermore the paper suggests a distributed protection architecture, which when applied to existing and future protection schemes, has the potential to enhance their functionality and avoid mal-operation given that safety and reliability of power systems are paramount. This architecture also provides a means to better understand the underlying dynamics of the aforementioned protection schemes and will be rigorously validated using the modelling environment.