Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Desktop scanner based metrology

Mair, Gordon and Divis, Pavel and Corney, Jonathan (2011) Desktop scanner based metrology. In: M2VIP 18th International Conference, 2011-12-06 - 2011-12-07.

[img] Microsoft Word (Desktop Scanner based Metrology)
Final_Desktop_Scanner_Based_Metrology_M2VIP.docx - Accepted Author Manuscript

Download (1MB)

Abstract

An investigation is presented of a low cost approach to the measurement of two and three dimensional objects using a flatbed scanner and image analysis software. Conventional measurement using relatively low cost instruments such as micrometers and vernier callipers can be time consuming and requires operator skills which result in higher overall costs. The increasing resolution and decreasing prices of flatbed scanners introduces the possibility of their use as a low cost alternative to traditional manual measuring. To investigate this, a simple dimensional measurement technique was developed using an unmodified, then a modified, flatbed scanner, a standard PC, and software. A thin sheet metal stencil and slip gauges were used for the two and three dimensional objects respectively. For the slip gauge measurement the lamp from inside the scanner was removed and placed above the block to project a shadow on a diffuser layer. The shadow was scanned and the image processed through software. Measured dimensions were compared with reference measurements taken by a high precision optical measuring machine. A dimensional accuracy of ±0.05 mm was achieved with a modified flatbed scanner system for slip gauge samples of nominal thickness 10mm and 5mm.