Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Simulating the fast transport of water through carbon nanotubes

Nicholls, William and Borg, Matthew Karl and Reese, Jason (2011) Simulating the fast transport of water through carbon nanotubes. In: 14th NSTL Nanotech Conference, 2011-06-13 - 2011-06-16.

[img] PDF
Reese_JM_Pure_Simulating_the_fast_transport_of_water_through_carbon_nanotubes_Apr_2011.pdf - Preprint

Download (875kB)

Abstract

Non-equilibrium molecular dynamics simulations are performed to investigate water transport through (7,7) CNTs and to examine how changing the CNT length affects the flow dynamics. We show that fluid flow rates are well in advance of continuum expectations and that this flow enhancement increases with increasing CNT length. This enhancement is related to the internal fluid structure. Water molecules form a tightly packed cylindrical shell inside (7,7) CNTs, with densities nearly 3.5 times that of the water reservoir.