Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Exploiting timescale separation in micro and nano flows

Lockerby, Duncan A. and Duque-Daza, Carlos A. and Borg, Matthew Karl and Reese, Jason (2011) Exploiting timescale separation in micro and nano flows. In: CECAM Workshop on Multiscale Modelling of Simple and Complex Liquid Flow Using Particle-Continuum Hybrids, 2011-10-05 - 2011-10-07.

[img] PDF
Reese_JM_Pure_Exploiting_timescale_separation_in_micro_and_nano_flows_Aug_2011.pdf - Preprint

Download (1MB)


In this paper we describe how timescale separation in micro/nano flows can be exploited for computational acceleration. A modified version of the seamless heterogenous multiscale method (SHMM) is proposed: a multi-step SHMM. This maintains the main advantages of SHMM (e.g., re-initialisation of micro data is not required; temporal gearing (computational speed-up) is easily controlled; and it is applicable to full and intermediate degrees of timescale separation) while improving on accuracy and greatly reducing the number of macroscopic computations and micro/macro coupling instances required. The improved accuracy of the multi-step SHMM is demonstrated for two canonical one-dimensional transient flows (oscillatory Poiseuille and oscillatory Couette flow) and for rarefied-gas oscillatory Poiseuille flow.