Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Dynamic reconfiguration technologies based on FPGA in software defined radio system

He, Ke and Crockett, Louise Helen and Stewart, Robert (2012) Dynamic reconfiguration technologies based on FPGA in software defined radio system. Journal of Signal Processing Systems for Signal, Image, and Video Technology, 69 (1). pp. 75-85. ISSN 1939-8018

[img]
Preview
PDF (Dynamic Reconfiguration Technologies Based on FPGA in Software Defined Radio System)
He_Crockett_Stewart_Dynamic_Reconfiguration_Technologies_FPGA_in_SDR.pdf - Final Published Version
License: Unspecified

Download (315kB) | Preview

Abstract

Partial Reconfiguration (PR) is a method for Field Programmable Gate Array (FPGA) designs which allows multiple applications to time-share a portion of an FPGA while the rest of the device continues to operate unaffected. Using this strategy, the physical layer processing architecture in Software Defined Radio (SDR) systems can benefit from reduced complexity and increased design flexibility, as different waveform applications can be grouped into one part of a single FPGA. Waveform switching often means not only changing functionality, but also changing the FPGA clock frequency. However, that is beyond the current functionality of PR processes as the clock components (such as Digital Clock Managers (DCMs)) are excluded from the process of partial reconfiguration. In this paper, we present a novel architecture that combines another reconfigurable technology, Dynamic Reconfigurable Port (DRP), with PR based on a single FPGA in order to dynamically change both functionality and also the clock frequency. The architecture is demonstrated to reduce hardware utilization significantly compared with standard, static FPGA design.