Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Characterisation of the flow in the molten metal sump during direct chill aluminium casting

Reese, Jason (1997) Characterisation of the flow in the molten metal sump during direct chill aluminium casting. Metallurgical and Materials Transactions B, 28 (3). pp. 491-499. ISSN 1073-5615

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A recent analytical model for the liquid aluminum flow in a direct chill (DC) casting sump has been investigated and the scaling coefficients evaluated. The magnitudes of flow-field features, such as the depth of the temperature stratification in the sump and the velocity of the metal in the thermal boundary layer close to the solidification front, have been calculated. The results broadly agree with recent full numerical calculations of the flow in the sump. The variation of these essential flow features has been investigated across a range of typical ingot sizes, casting speeds, and superheats, and critical macro-casting-parameter combinations have been identified. The limitations of the model are discussed and the possible effects the identified structure has on macrosegregation are briefly explored. Finally, the influence on the flow field of the method of feeding the ingot is investigated, and it is concluded that the model and these results are not invalidated if the feeding is nonuniform over the top surface of the sump.