Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Simultaneous determination of glycerol and clavulanic acid in an antibiotic process using attenuated total reflectance mid infrared spectroscopy

Roychoudhury, P. and McNeil, B. and Harvey, L.M. (2007) Simultaneous determination of glycerol and clavulanic acid in an antibiotic process using attenuated total reflectance mid infrared spectroscopy. Analytica Chimica Acta, 585 (2). pp. 246-252. ISSN 0003-2670

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Attenuated total reflectance mid infrared (ATR-MIR) spectroscopy is a potential technique for the near real-time monitoring of filamentous bioprocesses. Here we investigate the utility of ATR-MIR to monitor and predict concentrations of glycerol and product (clavulanic acid) in a complex antibiotic bioprocess. Streptomyces clavuligerus exhibits filamentous growth, thus, as biomass accumulates the process fluid becomes much more viscous, and develops pronounced non-Newtonian behaviour. A multivariate statistical technique, partial least square (PLS) has been used to develop models for the key analytes over the time course of the bioprocess. These models were then validated externally using unseen samples, not used in the original modelling exercise. Despite the heterogeneous nature of the bioprocess and the resulting complexity of the spectra, the models developed had high correlation coefficient values and low prediction error values of 0.302 and 0.009 for glycerol and clavulanic acid, respectively. The findings extend the use of ATR-MIR in these difficult fluids which are typical of filamentous industrial bioprocesses, and demonstrate the practical utility of the technique in the measurement of a range of analyte types, including those present at relatively modest levels compared to the concentrations of biomass and major substrates.