Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Synergistic approach of asteroid exploitation and planetary protection

Sanchez Cuartielles, Joan-Pau and McInnes, Colin (2012) Synergistic approach of asteroid exploitation and planetary protection. Advances in Space Research, 49 (4). pp. 667-687. ISSN 0273-1177

[img]
Preview
PDF
Sanchez_JP_McInnes_CR_Pure_Synergistic_appropach_to_asteroid_exploitationa_and_planetary_protection_Nov_2011.pdf - Draft Version

Download (6MB) | Preview

Abstract

The asteroid and cometary impact hazard has long been recognised as an important issue requiring risk assessment and contingency planning. At the same time asteroids have also been acknowledged as possible sources of raw materials for future large-scale space engineering ventures. This paper explores possible synergies between these two apparently opposed views; planetary protection and space resource exploitation. In particular, the paper assumes a 5 tonne low-thrust spacecraft as a baseline for asteroid deflection and capture (or resource transport) missions. The system is assumed to land on the asteroid and provide a continuous thrust able to modify the orbit of the asteroid according to the mission objective. The paper analyses the capability of such a near-term system to provide both planetary protection and asteroid resources to Earth. Results show that a 5 tonne spacecraft could provide a high level of protection for modest impact hazards: airburst and local damage events (caused by 15–170 m diameter objects). At the same time, the same spacecraft could also be used to transport to bound Earth orbits significant quantities of material through judicious use of orbital dynamics and passively safe aero-capture manoeuvres or low energy ballistic capture. As will be shown, a 5 tonne low-thrust spacecraft could potentially transport between 12 and 350 times its own mass of asteroid resources by means of ballistic capture or aero-capture trajectories that pose very low dynamical pressures on the object.

Item type: Article
ID code: 36476
Keywords: near-Earth objects, near-Earth asteroids, asteroid deflection, asteroid exploitation, space utilization, Mechanical engineering and machinery, Motor vehicles. Aeronautics. Astronautics, Aerospace Engineering, Control and Systems Engineering, Geotechnical Engineering and Engineering Geology
Subjects: Technology > Mechanical engineering and machinery
Technology > Motor vehicles. Aeronautics. Astronautics
Department: Faculty of Engineering > Mechanical and Aerospace Engineering
Technology and Innovation Centre > Advanced Engineering and Manufacturing
Depositing user: Pure Administrator
Date Deposited: 19 Dec 2011 10:53
Last modified: 07 Aug 2015 21:37
Related URLs:
URI: http://strathprints.strath.ac.uk/id/eprint/36476

Actions (login required)

View Item View Item