Picture of flying drone

Award-winning sensor signal processing research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in award-winning research into technology for detecting drones. - but also other internationally significant research from within the Department of Electronic & Electrical Engineering.

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Generation scheduling using genetic algorithm based hybrid techniques

Dahal, K. and Galloway, S.J. and Burt, G.M. and McDonald, J.R. (2001) Generation scheduling using genetic algorithm based hybrid techniques. In: LESCOPE 01. IEEE, New York, pp. 74-78. ISBN 0780371070

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The solution of generation scheduling (GS) problems involves the determination of the unit commitment (UC) and economic dispatch (ED) for each generator in a power system at each time interval in the scheduling period. The solution procedure requires the simultaneous consideration of these two decisions. In recent years researchers have focused much attention on new solution techniques to GS. This paper proposes the application of a variety of genetic algorithm (GA) based approaches and investigates how these techniques may be improved in order to more quickly obtain the optimum or near optimum solution for the GS problem. The results obtained show that the GA-based hybrid approach offers an effective alternative for solving realistic GS problems within a realistic timeframe.