Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Generation scheduling using genetic algorithm based hybrid techniques

Dahal, K. and Galloway, S.J. and Burt, G.M. and McDonald, J.R. (2001) Generation scheduling using genetic algorithm based hybrid techniques. In: LESCOPE 01. IEEE, New York, pp. 74-78. ISBN 0780371070

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The solution of generation scheduling (GS) problems involves the determination of the unit commitment (UC) and economic dispatch (ED) for each generator in a power system at each time interval in the scheduling period. The solution procedure requires the simultaneous consideration of these two decisions. In recent years researchers have focused much attention on new solution techniques to GS. This paper proposes the application of a variety of genetic algorithm (GA) based approaches and investigates how these techniques may be improved in order to more quickly obtain the optimum or near optimum solution for the GS problem. The results obtained show that the GA-based hybrid approach offers an effective alternative for solving realistic GS problems within a realistic timeframe.