Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Evaluating the potential of polyester nanoparticles for per oral delivery of amphotericin B in treating visceral leishmaniasis

Italia, Jagdishbhai Laxmanbhai and Kumar, M.N.V Ravi and Carter, Katharine (2012) Evaluating the potential of polyester nanoparticles for per oral delivery of amphotericin B in treating visceral leishmaniasis. Journal of Biomedical Nanotechnology, 8 (4). pp. 695-702. ISSN 1550-7033

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Leishmaniasis is a protozoan disease, which is responsible for response for major epidemics in many parts of the World. Amphotericin B (AMB) is one of the drugs used to treat leishmaniasis but it must be given intravenously and serious side effects such as nephrotoxicity can limit its use. Development of a formulation of AMB, which can be given by a non-invasive route but is still as effective as the conventional formulation, whilst causing minimal adverse side effects, is required. The present study describes a method for scale up production of a per oral nanoparticle formulation of AMB (AMB-NP) and compared its efficacy both in vitro and in vivo against Leishmania donovavni. Prophylactic studies showed that the AMB-NP formulation was significantly more effective (p < 0.05) than the same dose of AMB solution at suppressing parasite numbers compared to controls in bone marrow derived macrophages infected with L. donovani. Per oral treatment with AMB-NP resulted in a significant reduction in liver parasite burdens (p < 0.05) compared to control values and the formulation had a similar antileishmanial activity against parasites with different inherent susceptibilities to sodium stibogluconate.