Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Numerical analysis of limit load and reference stress of defective pipelines under multi-loading system

Chen, Haofeng and Liu, Y.H. and Cen, Z.Z. and Xu, B.Y. (1998) Numerical analysis of limit load and reference stress of defective pipelines under multi-loading system. International Journal of Pressure Vessels and Piping, 75 (2). pp. 105-114. ISSN 0308-0161

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The concepts of limit load and reference stress have been widely used in structural engineering design and component integrity assessment, especially in Nuclear Electric's (formerly CEGB) R5 and R6 procedures. The referencestress method has been proven to be successful in problems pertaining to creep growth, rupture damage, creep buckling, and more recently, elastic–plastic fracture toughness. An approximate method of referencestress determination relies on prior knowledge of limit loads for various configurations and loadings. However, determination of the limit loads for the problems with complicated geometric forms and loading conditions is not a simple task. In the present paper, a numerical solution method for radial loading is presented, the mathematical programming formulation is derived for the kinematic limit analysis of 3D structures undermulti-loading systems, and moreover, a direct iterative algorithm used to determine the referencestress is proposed which depends on the evaluation of limitload. The numerical procedure is applied to determine the limitload and referencestress of defectivepipelinesundermulti-loading systems. The effects of four kinds of typical part-through slots on the collapse loads of pipelines are investigated and evaluated in detail. Some typical failure modes corresponding to different configurations of slots and loading forms are studied.