Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Sea-age variation in maiden Atlantic salmon spawners : phenotypic plasticity or genetic polymorphism?

Gurney, William and Bacon, P.J. and Speirs, Douglas and McGinnity, P. and Verspoor, Eric (2012) Sea-age variation in maiden Atlantic salmon spawners : phenotypic plasticity or genetic polymorphism? Bulletin of Mathematical Biology, 74 (3). pp. 615-640. ISSN 0092-8240

Full text not available in this repository. Request a copy from the Strathclyde author


Atlantic salmon exhibit a partially heritable polymorphism in which the morphs are distinguished by the duration and location of the sea-phase of their life-cycle. These morphs co-occur, albeit in characteristically different proportions, in most Scottish rivers and in both the spring and autumn spawner runs; early running fish being generally associated with upland spawning locations while late running fish are associated with lowland spawning. Thus, differences in riverine and marine environment appear to be linked to differences in the relative abundance of the morphs, rather than to the specific morph which is optimally adapted. In this paper, we report a model-based synthetic study aimed at understanding the key dynamic elements which determine the long-term stability of this polymorphism, and thus determine the relative abundance of the various sea-age morphs. Given the recent accumulation of evidence for a genetic basis for the polymorphism, we argue that the key dynamic mechanism which equalises the realized fitness of the sea-age morphs must be one or more morph-specific density dependencies in the riverine phase of the life-history. We explore a number of specific mechanisms, firmly based in known salmon biology, by which such morph-specific density dependence could occur and investigate the robustness of the co-existence which they imply. We conclude that the co-occurrence of multiple sea-age morphs of Atlantic salmon in Scottish rivers is a stable genetic polymorphism, maintained by some combination of physical separation and asymmetric competition between spawners of different morphs or the riverine stages of their offspring or both.