Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Bernstein–Bézier finite elements of arbitrary order and optimal assembly procedures

Ainsworth, Mark and Andriamaro, Miangaly Gaelle and Davydov, Oleg (2011) Bernstein–Bézier finite elements of arbitrary order and optimal assembly procedures. SIAM Journal on Scientific Computing, 33 (6). pp. 3087-3109. ISSN 1064-8275

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Algorithms are presented that enable the element matrices for the standard finite element space, consisting of continuous piecewise polynomials of degree $n$ on simplicial elements in $\mathbb{R}^d$, to be computed in optimal complexity $\mathcal{O}(n^{2d})$. The algorithms (i) take into account numerical quadrature; (ii) are applicable to nonlinear problems; and (iii) do not rely on precomputed arrays containing values of one-dimensional basis functions at quadrature points (although these can be used if desired). The elements are based on Bernstein polynomials and are the first to achieve optimal complexity for the standard finite element spaces on simplicial elements.