Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Cerebral metabolic responses to 5-HT2A/C receptor activation in mice with genetically modified serotonin transporter (SERT) expression

Dawson, Neil and Ferrington, Linda and Lesch, Klaus-Peter and Kelly, Paul A.T (2011) Cerebral metabolic responses to 5-HT2A/C receptor activation in mice with genetically modified serotonin transporter (SERT) expression. European Neuropsychopharmacology, 21 (1). pp. 117-128. ISSN 0924-977X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Variation in the human serotonin transporter gene (hSERT; 5-HTT) resulting in a life-long alteration in SERT function influences anxiety and the risk of developing affective disorders. The mechanisms underlying the influence of the hSERT gene on these phenotypes remain unclear but may involve altered 5-HT receptor function. Here we characterise the cerebral metabolic response to 5-HT2A/C receptor activation in two transgenic mouse models of altered SERT function, SERT knock-out (SERT KO) and hSERT over-expressing (hSERT OE) mice, to test the hypothesis that genetically mediated variability in SERT expression alters 5-HT2A/C function. We found that a constitutive increase in SERT expression (hSERT OE) enhanced, whereas a constitutive decrease in SERT expression (SERT KO) attenuated, 5-HT2A/C function. Therefore, altered 5-HT2A/C receptor functioning in response to hSERT gene variation may contribute to its influence on affective phenotypes.