Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

On the interpretation of event and sub-event rainfall chemistry

BEVERLAND, I J and CROWTHER, J M (1992) On the interpretation of event and sub-event rainfall chemistry. Environmental Pollution, 75 (2). pp. 163-174. ISSN 0269-7491

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Variations in precipitation chemistry between and within rain events have been examined in order to identify possible relationships with synoptic, mesoscale and micrometeorological processes. A microprocessor-based acid rain monitor was used to provide high resolution meteorological and rain chemistry data from which two case study events have been selected to illustrate event and sub-event rainfall chemistry characteristics. Event rainfall chemistry is strongly influenced by the history of the prevailing air mass and the synoptic situation. From back trajectories calculated at the 950 mbar level it is clear that air mass history can change markedly within a few hours. These observations emphasise the value of high resolution rainfall chemistry measurements. Pollutant concentrations in rainwater have been shown to fluctuate markedly within the course of individual events as a result of both advective and scavenging processes. Advective effects may result from: (a) air mass discontinuities at frontal zones; and/or (b) variable rainfall interception of the air mass prior to arrival at the site. A simple mathematical model has been developed to describe the scavenging mechanisms and it shows good agreement with field observations. Theoretical considerations suggest that in-cloud processes give rise to most of the observed decline in concentrations.