Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Cavity resonator free electron lasers as a source of stable attosecond pulses

McNeil, B.W.J. and Thompson, N.R. (2011) Cavity resonator free electron lasers as a source of stable attosecond pulses. EPL: A Letters Journal Exploring the Frontiers of Physics, 96. ISSN 0295-5075

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

High-gain Free Electron Laser amplifiers are a potential source of single X-ray attosecond pulses and Attosecond Pulse Trains. Single-pulse output from short electron bunches is prone to significant power and arrival-time fluctuations. A Mode Locked Optical Klystron configuration of the FEL amplifier predicts generation of a frequency comb that may be locked to give APT output. In this paper it is shown using numerical simulations that a low feedback (so-called Regenerative Amplifier) FEL cavity resonator configuration can significantly improve output stability for single-pulse operation. The MLOK configuration may also be used in a cavity resonator to generate a frequency comb with spacing much greater than those of the axial cavity modes. As with the MLOK amplifier case, these modes can lock to generate a stable pulse train, each of a few optical cycles.