Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Pulse propagation effects in a cyclotron resonance maser amplifier

Aitken, P and McNeil, B W J and Robb, G R M and Phelps, A D R (1999) Pulse propagation effects in a cyclotron resonance maser amplifier. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 59 (1). pp. 1152-1166. ISSN 1063-651X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An analysis is presented of a cyclotron resonance maser amplifier operating with electron pulses. The electrons are resonant at two frequencies of the same waveguide mode. We consider both a single resonant frequency interaction and also a coupled two resonant frequency interaction. It is shown that, in general, the interaction with both resonant frequencies must be taken into account. The analysis includes propagation effects due to the difference between the axial velocity of the electrons and the group velocities of the radiation fields. Both linear and numerical solutions to the equations are given, and superradiant emission is demonstrated where the radiated power scales as the square of the electron pulse current. Two methods of low-frequency suppression are presented allowing the high-frequency emission to dominate. These results may have important consequences for the generation of short pulses of high-frequency, high-power microwave radiation. [S1063-651X(99)01001-6].