Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Theory and design of a free-electron maser with two-dimensional feedback driven by a sheet electron beam

Ginzburg, N S and Peskov, N Y and Sergeev, A S and Phelps, A D R and Konoplev, I V and Robb, G R M and Cross, A W and Arzhannikov, A V and Sinitsky, S L (1999) Theory and design of a free-electron maser with two-dimensional feedback driven by a sheet electron beam. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 60 (1). pp. 935-945. ISSN 1063-651X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The use of two-dimensional Bragg resonators of planar geometry, realizing two-dimensional (2D) distributed feedback, is considered as a method of producing spatially coherent radiation from a large sheet electron beam. The spectrum of eigenmodes is found for a 2D Bragg resonator when the sides of the resonator are open and also when they are closed. The higher selectivity of the open resonator in comparison with the closed one is shown. A time-domain analysis of the excitation of an open 2D Bragg resonator by a sheet electron beam demonstrates that a single-mode steady-state oscillation regime may be obtained for a sheet electron beam of width 100-1000 wavelengths. Nevertheless, for a free-electron maser (FEM) with a closed 2D Bragg resonator, a steady-state regime can also be realized if the beam width does not exceed 50-100 wavelengths. The parameters for a FEM with a 2D planar Bragg resonator driven by a sheet electron beam based on the U-2 accelerator (INP RAS, Novosibirsk) are estimated and the project is described. [S1063-651X(99)04207-5].

Item type: Article
ID code: 36132
Keywords: free electron laser, Bragg resonators, free electron lasers, free electron masers, 2D Bragg, FEL, electron beam , electron bunches, FEM, Plasma physics. Ionized gases, Physics and Astronomy(all), Mathematical Physics, Statistical and Nonlinear Physics, Condensed Matter Physics
Subjects: Science > Physics > Plasma physics. Ionized gases
Department: Faculty of Science > Physics
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 28 Nov 2011 11:03
    Last modified: 05 Sep 2014 13:58
    URI: http://strathprints.strath.ac.uk/id/eprint/36132

    Actions (login required)

    View Item