Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Development of an experiment-based robust design paradigm for multiple quality characteristics using physical programming

Antony, Jiju (2007) Development of an experiment-based robust design paradigm for multiple quality characteristics using physical programming. International Journal of Advanced Manufacturing Technology, 35 (11-12). pp. 1100-1112.

[img]
Preview
PDF
IJAMT.pdf - Preprint

Download (354kB) | Preview

Abstract

The well-known quality improvement methodology, robust design, is a powerful and cost-effective technique for building quality into the design of products and processes. Although several approaches to robust design have been proposed in the literature, little attention has been given to the development of a flexible robust design model. Specifically, flexibility is needed in order to consider multiple quality characteristics simultaneously, just as customers do when judging products, and to capture design preferences with a reasonable degree of accuracy. Physical programming, a relatively new optimization technique, is an effective tool that can be used to transform design preferences into specific weighted objectives. In this paper, we extend the basic concept of physical programming to robust design by establishing the links of experimental design and response surface methodology to address designers’ preferences in a multiresponse robust design paradigm. A numerical example is used to show the proposed procedure and the results obtained are validated through a sensitivity study.