Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Effect of column base strength on steel portal frames in fire

Rahman, Mahbubur and Lim, James B.P. and Xu, Yixiang and Hamilton, Robert and Comlekci, Tugrul and Pritchard, David (2012) Effect of column base strength on steel portal frames in fire. Proceedings of the ICE - Structures and Buildings, 166 (4). pp. 197-216. ISSN 0965-0911

stbu1100040h.pdf - Final Published Version

Download (3MB) | Preview


In the UK, the design of steel portal frame buildings in fire is based on the Steel Construction Institute (SCI) design method, in which fire protection needs only be provided to the columns, provided that the column bases are designed to resist an overturning moment, M_OTM, calculated in accordance with the SCI design method. In this paper, a non-linear elastic-plastic implicit dynamic finite element model of a steel portal frame building in fire is described and used to assess the adequacy of the SCI design method. Both 2-D and 3-D models are used to analyse a building similar to the Exemplar frame described in the SCI design guide. Using the 2-D model, a parametric study comprising 27 frames is conducted. It is shown that the value of the overturning moment, calculated in accordance with the SCI design method, may not be sufficient to prevent collapse of the frame before 890 °C.