Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Bayesian ranking of biochemical system models

Vyshemirsky, Vladislav and Girolami, Mark (2008) Bayesian ranking of biochemical system models. Bioinformatics, 24 (6). pp. 833-839. ISSN 1367-4803

Full text not available in this repository. Request a copy from the Strathclyde author


There often are many alternative models of a biochemical system. Distinguishing models and finding the most suitable ones is an important challenge in Systems Biology, as such model ranking, by experimental evidence, will help to judge the support of the working hypotheses forming each model. Bayes factors are employed as a measure of evidential preference for one model over another. Marginal likelihood is a key component of Bayes factors, however computing the marginal likelihood is a difficult problem, as it involves integration of nonlinear functions in multidimensional space. There are a number of methods available to compute the marginal likelihood approximately. A detailed investigation of such methods is required to find ones that perform appropriately for biochemical modelling. We assess four methods for estimation of the marginal likelihoods required for computing Bayes factors. The Prior Arithmetic Mean estimator, the Posterior Harmonic Mean estimator, the Annealed Importance Sampling and the Annealing-Melting Integration methods are investigated and compared on a typical case study in Systems Biology. This allows us to understand the stability of the analysis results and make reliable judgements in uncertain context. We investigate the variance of Bayes factor estimates, and highlight the stability of the Annealed Importance Sampling and the Annealing-Melting Integration methods for the purposes of comparing nonlinear models.