Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Investigating the reliability and criticality of the maintenance characteristics of a diving support vessel

Turan, Osman and Lazakis, Iraklis and Judah, Sol and Incecik, Atilla (2011) Investigating the reliability and criticality of the maintenance characteristics of a diving support vessel. Quality and Reliability Engineering International, 27 (7). 931–946. ISSN 0748-8017

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Maintenance tasks and their application in the shipping industry have evolved significantly in the recent years. Particularly in the offshore industry, safety onboard, environmental protection and intensive operational activities necessitate the minimization of down-time and the preservation of an excellent performance ratio. The first step of an innovative ship maintenance strategy, which is proposed by the authors and is based on criticality and reliability assessment, is presented herein using the FTA tool with time-dependant dynamic gates so as to represent in an accurate and comprehensive way the interrelation of the components of a system. The paper also presents a review of the maintenance standards and procedures, such as the ALARP concept, the Key Programme 3-Asset Integrity (KP3) initiative, the OREDA handbook as well as the RCM and RBI principles. As part of the reliability assessment, the Birnbaum and Criticality reliability importance measures are utilized to validate the results of the analysis. A case study of a diving support vessel (DSV) illustrates the application of this strategy. The main systems examined are: the vessel's power plant, propulsion, water system, lifting, hauling and anchoring, diving and finally the safety system. The reliability of the main systems and subsystems as well as of their critical components is identified and suggestions of how to improve the overall reliability of the various systems both at a component, system and managerial level are also proposed.