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This paper investigates the development of a new guidance algorithm for a formation of unmanned aerial vehicles.

Using thenewapproachof bifurcating potentialfields, it is shown that a formation of unmannedaerial vehicles canbe

successfully controlled such that verifiable autonomous patterns are achieved, with a simple parameter switch

allowing for transitions between patterns. The key contribution that this paper presents is in the development of a

new bounded bifurcating potential field that avoids saturating the vehicle actuators, which is essential for real or

safety-critical applications. To demonstrate this, a guidance and control method is developed, based on a six-degree-

of-freedom linearized aircraft model, showing that, in simulation, three-dimensional formation flight for a swarm of

unmanned aerial vehicles can be achieved.

Nomenclature

a, b, c = formation control constants
Ce, Le = exponential potential amplitude and length scale
Ch = hyperbolic amplitude
Cr, Lr = repulsive potential amplitude and length scale
e = error in system
K1,K2 = controller feedback gains
N = number of unmanned aerial vehicles
p, q, r = roll, pitch, and yaw rates, rad= s�1

r = scalar constant
u, v, w = body axis speed in x, y, and z directions, ms�1

ud = desired unmanned-aerial-vehicle speed, m=s
ulat = lateral inputs
ulong = longitudinal inputs
ux = desired unmanned-aerial-vehicle forward speed,

m=s
US;e
i = exponential steering potential of the ith unmanned

aerial vehicle
US;h
i = hyperbolic steering potential of the ith unmanned

aerial vehicle
US;he
i = combined hyperbolic-exponential steering potential

of the ith unmanned aerial vehicle
UR = repulsive potential field
US = steering potential field
Vmax = maximum speed of the unmanned aerial vehicle
Vtrim = trim speed of the unmanned aerial vehicle
vi = velocity vector of ith unmanned aerial vehicle
vj = velocity vector of jth unmanned aerial vehicle

vRi = repulsive velocity vector of the ith unmanned aerial
vehicle

vSi = steering velocity vector of the ith unmanned aerial
vehicle

vS;ei = exponential steering velocity vector of the ith
unmanned aerial vehicle

vS;hi = hyperbolic steering velocity vector of the ith
unmanned aerial vehicle

xi = position vector of the ith unmanned aerial vehicle
xj = position vector of the jth unmanned aerial vehicle
�xlat = lateral state variables
�xlong = longitudinal state variable
xo = equilibrium position vector
y = output of control system
yd = desired input to the system
�e, �a, �r = input to elevator, aileron, and rudder, rad
�e;d, �a;d,
�r;d

= desired input to elevator, aileron, and rudder, rad

�t = thrust input, N
�t;d = desired thrust input, N
�d = desired pitch angle, rad
� = bifurcation parameter
�i = formation control scalar
�, �,  = roll, pitch, and yaw angles, rad
 d = desired heading angle, rad
��̂� = unit vector

I. Introduction

I NRECENTyears, the area of swarm robotics has developed into a
major research field driven by the need to solve engineering

problems in new and efficient ways. A key aspect of the swarm
system is that it is distributed and therefore does not rely on a central
controller. Consequently, these systems can have the advantages of
being robust, scalable, and flexible, and they allow engineers the
opportunity to approach problems in new ways.

One of the areas researching swarm robotics is the control of
formations of unmanned aerial vehicles (UAVs) [1–6]. The potential
applications for this type of system are for scientific data gathering or
for military convoy protection, for example. To control these sys-
tems, researchers often base the development of the control architec-
tures on the swarm intelligence paradigm that describes “any attempt
to design algorithms or distributed problem-solving devices inspired
by the collective behavior of social insect colonies and other animal
societies” [7].
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One of the first to implement this idea was Reynolds’s boids
simulation of flocking in birds in 1987 [8]. This heuristic ruled-based
approach based the movement of each boid on three simple steering
behaviors (separation, alignment, and cohesion) and produced
interesting qualitative behaviors. The method was later investigated
by Heppner and Grenander [9] and more recently applied to form-
ation control of autonomous UAVs by Crowther [10,11]. Although
producing successful behaviors, demonstrating that swarming
behavior can be replicated through a set of simple rules, this approach
lacks formal verification for the behaviors, and therefore limits its
ability to be applied to a real engineered system.

In the mid-1980s, Brooks introduced a paradigm shift in the way
that robotic systems were designed [12]. Compared with the
traditional artificial intelligence approach that aimed at reproducing
human cognition, Brooks developed a behavior-based approach that
did not require an internal model of the environment, creating a
completely reactive system driven by sensing and communication.
The algorithm developed was the subsumption architecture that
consists of a layered set of behaviors with top-level behaviors
subsuming lower-level behaviors. A related approach is finite state
automata, where robots are modeled as finite state machines with the
use of Markov dynamics to describe the behavior of the swarm [13].
Both of these ad hoc approaches successfully produced interesting
qualitative behaviors such as flocking and dispersion; however, they
also had no formal means of verification.

The artificial potential field (APF) method is a fusion behavior-
based architecture that combines several behaviors together,
resulting in a superimposed behavior. It was first introduced by
Khatib [14] in the area of obstacle avoidance for manipulators and
mobile robots and has been studied extensively for autonomous path
planning for single mobile robots [15–18] and more recently has
been applied to autonomous swarming systems [19–22]. The APF
field is used to generate afirst- or second-order dynamical system and
can often be used to mathematically prove the stability of the emer-
gent behaviors, therefore replacing traditional algorithm valida-
tion. In addition, there exists an array of theorems in dynamical
systems theory that can be used to develop newways of controlling a
swarm.

In [23], it was shown that by using a steering and repulsive APF, a
swarm of UAVs can be successfully controlled such that desired
patterns are formed, with the new approach of bifurcating potential
fields allowing for a transition between different patterns through a
simple parameter switch. Using a first-order dynamical system, the
desired swarm velocity field is transformed into guidance commands
for forward control speed and heading angle. This paper extends the
analysis by developing a bounded bifurcating potential field. To
prevent the guidance velocity command from becoming saturated, a
bounded bifurcating hyperbolic potential is introduced. In addition,
the APF is generalized so that the swarm can be attracted to a variety
of different states. To demonstrate themodel, the guidance algorithm
is applied to a formation of nine fixed-wing UAVs, considering a
linearized six-degree-of-freedom (6-DOF)UAVmodel, with a robust
controller designed for the linear time-invariant multivariable
systems used.

Related work on the use of the APF method to control UAVs
includes Frew et al., who implemented Lyapunov vectorfields for the
guidance of unmanned aircraft [24]. They showed that this approach
provides a globally stable convergence to a limit-cycle behavior for a
single UAV platform and verified the simulation result in the devel-
opment of a real UAV. In addition, Han et al. implemented
the APF and a robust sliding mode controller in order to simulate the
control of a swarm ofUAVs, showing that their proposedmethod of a
swarm geometry center control can track a desired trajectory [25].

The paper proceeds as follows. In the next section, a new bound
bifurcating potential field is developed and then generalized so that
different UAV swarm patterns can be achieved. The new guidance
algorithm is then applied to a swarm of nine UAVs, considering a
6-DOF linearized UAV model. Under the assumption that the longi-
tudinal and lateral aircraft equations ofmotion can be decoupled, it is
shown that the UAVs can form different autonomous patterns,
following the desired commands.

II. Swarm Unmanned-Aerial-Vehicle Model

A. Velocity Field

A swarm ofN homogeneous UAVs are considered, where �xi; vi�
and �xj; vj� define the position and velocity vectors of the ith and jth
UAVs, respectively, and xij defines the separation distance between
the ith and jth UAVs, as shown in Fig. 1.

Each UAV is treated as a particle, acted upon by a velocity field as
described in Eq. (1):

v i ��riUS�xi� � riUR�xij� (1)

where US and UR are defined as the steering and repulsive APFs,
respectively, xi � �xi; yi; zi�T and xij � xi � xj.

As can be seen in Eq. (1), the gradient of the steering and repulsive
potential defines a velocity field acting on each UAV, where the
steering potential is used to control the formation and the repulsive
potential is used for collision avoidance and an equally spaced final
formation.

B. Artificial Potential Field

Related previous work has shown that by using a guidance
algorithm, based on classical bifurcation theory, a formation ofUAVs
can create autonomous desired patterns, switching between patterns
through a simple parameter change [23]. Using Lyapunov stability
methods, the desired autonomous patterns can be analytically proven
as opposed to traditional algorithm validationmethods. To ensure the
stability of real safety or mission critical systems, it is important to
consider the issue of saturation. A new bounded bifurcating potential
field is therefore developed. Considering Eq. (1), it can be seen that
through the triangle inequality, the maximum control velocity for the
ith UAV is

jvij � jriUS�xi�j � jriUR�xij�j (2)

Therefore, the maximum control velocity each UAV will
experience is a combination of the maximum gradient of the steering
and repulsive potentials.

1. Bifurcating Steering Potential

Bifurcating potential fields allow for themanipulation of the shape
of the potential through a simple parameter change. This change
alters the stability properties of the potential, and thus the emergent
patterns that the swarm relaxes into. An example of bifurcating
steering potential is shown in Eq. (3) based on the pitchfork
bifurcation equation:

US
i �xi;�� � �1

2
��jxij � r�2 � 1

4
�jxij � r�4 (3)

where � is the bifurcation parameter, and r is a scalar.
Figures 2 and 3 show how the potential and number of equilibrium

positions alter as the bifurcation parameter is changed. As can be
seen, if �< 0, there is one stable equilibrium position; however, if
�> 0, there are then two stable equilibrium positions.

As stated in Eq. (1), the gradient of the potential defines a velocity
field acting on each UAV. Therefore, Eq. (4) and Fig. 4 show the
velocity field vSi due to the pitchfork potential:

Fig. 1 Definition of UAV position and velocity vectors.
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v Si ��riUS�xi� � ���jxij � r� � �jxij � r�3	x̂i (4)

where ��̂� denotes a unit vector.
As can be seen fromEq. (4) and Fig. 4, the steering control velocity

is unbound as distance from the equilibrium position increases;
therefore, the issue of velocity saturation may occur in a real system.

To overcome this problem, a hyperbolic potential field can be
used, as proposed by Badawy andMcInnes [26]. This function has a
bound, constant gradient as the distance from the equilibrium
position increases and has a smooth shape at the goal. Equation (5)

and Fig. 5 show the hyperbolic potential field US;h
i �xi� that can be

used to steer the UAVs:

US;h
i �xi� � Ch��jxij � r�2 � 1	0:5 (5)

where Ch controls the amplitude of this function.
To achieve a bifurcating potential field, an additional exponential

steering potential term is added, as shown in Eq. (6) and Fig. 6:

US;e
i �xi� � �Ceexp���jxij�r�

2 	=Le (6)

where Ce and Le control the amplitude and range of the potential,
respectively, and � is the bifurcation parameter.

Combining Eqs. (5) and (6) results in a bound steering potential

US;he
i �xi� given in Eq. (7) and Fig. 7. Again, if � < 0, there is one

equilibrium position; however, if � > 0, the potential will bifurcate
into two stable equilibrium positions:

US;he
i �xi� � Ch��jxij � r�2 � 1	0:5 � �Ceexp���jxij�r�

2 	=Le (7)

The maximum value of the new bound velocity field can be found
analytically. First, consider the hyperbolic potential function given in

Eq. (5). Thevelocity vS;hi due to this term is given inEq. (8) andFig. 8:

v S;hi ��riUS;h�xi� � �
Ch�jxij � r�

��jxij � r�2 � 1	0:5 x̂i (8)

Therefore, the maximum velocity due to this term is

jvS;hi jmax � Ch (9)

Next, consider the exponential steering potential given in Eq. (6).

The velocity vS;ei due to this term is given in Eq. (10) and Fig. 9:
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Fig. 2 Pitchfork potential, r� 5 (jxoj denotes equilibrium position).
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v S;ei ��riUS;e�xi� � 2�
Ce
Le

x̂i�jxij � r�exp���jxij�r�
2=Le 	 (10)

The maximum velocity due to the exponential term jvS;ei jmax

occurs when jxij � r

�����������
Le=2

p
, giving

jvS;ei jmax �
���
2
p
�exp�0:5

Ce������
Le
p (11)

Depending upon the constants chosen in Eq. (7), the maximum
bound velocity will either be controlled through the hyperbolic or
exponential term. Figure 10 illustrates this for the case when �> 0,
and constants are chosen so that either the hyperbolic or exponential

term dominates. If the hyperbolic term dominates, jvS;hei jmax � Ch. If,
however, the exponential term dominates, then jvS;hei jmax can be
found numerically.

2. Repulsive Potential

The repulsive potential is a simple pairwise exponential function
that is based on a generalized Morse potential [22] as follows

UR
i �

X
j;j≠i

Crexp
�jxijj=Lr (12)

where jxijj � jxi � xjj and Cr and Lr are constants controlling the
amplitude and length scale of the potential, respectively.

The repulsive potential is a bound velocity that has a maximum
value equal to CR=LR that occurs when xij � 0. This would,
however, occur when two UAVs are in the same position, and
therefore would have collided. The realistic maximum control
velocity can therefore be expressed as

jvRi jmax � Cr=Lrexp��jxijjmin=Lr� (13)

where jxijjmin � jxi � xjjmin is the minimum separation distance
between both UAVs without colliding, as shown in Fig. 11, for
example.

III. Pattern Formation and Reconfigurability

To allow three-dimensional formation patterns, the following
steering potential can be used based on the bound bifurcating
potential discussed in the previous section:
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US�xi� � Ch�
�������������������������������
�jxij � r�2 � 1

p
�

��������������
�2i � 1

q
	

� �Ce exp�
�jxij � r�2

Le
(14)

where

jxij �
������������������������������
�x2i � y2i � z2i �

q
(15)

�i � k � xi (16)

k � �a; b; c�T (17)

and a, b, and c are constants.
The purpose of this steering potential is to drive the UAVs to a

distance r from the origin, with the manipulation of the free
parameters (�, a, b, and c) allowing for different formations. For
example, if a� 1, b� 0, and c� 0, then a ring formation that is
parallel to the y-z plane is obtained. In the case of a� 0, b� 0, and
c� 0, each UAV will be driven to distance r in the x-y-z plane, thus
creating an sphere pattern.

As an example, consider a simplified formation of 10 point-mass
UAVs that are desired to form three different formation patterns
traveling at a constant speed ux, once in their desired formation. To
achieve this, the velocity field acting on each UAV is defined as

_xi � 2�
Ce
Le

x̂i�jxij � r�exp���jxij�r�
2=Le 	 � Ch

�
k�n

��2n � 1�0:5

� x̂n
�jxnj � r�

��jxnj � r�2 � 1	0:5
�
�
X
j;j≠i

Cr
Lr

x̂ijexp
�jxijj=Lr � uc (18)

where xn � xi � uxt, t is time, xn � �xn; yi; zi�T , �n � k � xn, and
uc � �ux; 0; 0�T .

The swarm of agents are desired to form a double-ring pattern in
the y-z plane, which then bifurcates into a single-ring pattern and
then a ring pattern in the x-y plane (radius� r). Each UAV is given
random initial conditions, with a maximum speed of 5 andminimum
separation distance of 1. It is also assumed that they can move
instantaneously in all degrees of freedom and communicate freely
with each other. The free parameters are chosen to satisfy these
constraints, as summarized in Table 1.

Figures 12–15 show the formation trajectories, patterns, velocity
profile, and separation distance. As can be seen, the swarm of agents
autonomously forms the desired patterns, traveling at the desired
speed once in equilibrium, and satisfies constraints made regarding
the maximum speed and minimum separation distance between
agents. It should be noted that, in the formation of the double ring, the
split of UAVs is largely uncontrolled and dependent upon the initial
conditions.

IV. Unmanned-Aerial-Vehicle Guidance and Control

A. Guidance Law

The desired velocity field is now transformed into a set of real
commands for each UAV for desired forward speed (ud), heading
( d), and pitch (�d) as follows:

ud;i �
���������������������������������
v2x;i � v2y;i � v2z;i

q
(19)

 d;i � arctan

�
vy;i
vx;i

�
(20)

�d;i � arctan

�
vz;i
vx;i

�
(21)

Using these desired guidance commands, the new bound potential
model is verified in a 6-DOF linear kinematic UAVmodel for a low-
speedfixed-wingUAV that is linearized about straight and levelflight
conditions with a nominal forward speed of 11:3 ms�1 [27].
Equations (22) and (23) show the uncoupled longitudinal and lateral
equations of motion, respectively, [28]

Table 1 Formation free parameters

Formation Time, s � r Cr Lr Ch Ce Le a b c ux

A 0–50 2 4 10 1 1 1.5 1.5 1 0 0 1
B 50–100 �1 6 10 1 1 1.5 1.5 1 0 0 1
C 100–150 �1 6 10 1 1 1.5 1.5 0 0 1 1
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where �u; v; w�T represent the forward, side, and vertical velocities,
��; �;  �T represent the roll, pitch, and yaw angles, �p; q; r�T
represent the roll, pitch, and yaw rates, respectively, and
��a; �r; �e; �t�T and ��a;d; �r;d; �e;d; �t;d�T represent the actual and
desired aileron, rudder, and elevator deflections and thrust offsets,
respectively. These state variables represent the deviation from the
trim flight conditions. The stability derivatives for both longitudinal
and lateral motions are given in [28].

B. Control Law

Both the longitudinal and lateral equations of motion can be
expressed in the state-space form as

_�x�A �x�Bu�A
�xlong

�xlat

� �
� B

ulong

ulat

� �
(24)

y �C �x�C
�xlong

�xlat

� �
(25)

where �xlong � �u;w; q; �; �e; �t	T and �xlat � �v; p; r; �;  ; �a; �r	T are
the state variables of the system, ulong � ��e;d; �t;d	T and ulat �
��a;d; �r;d	T are the inputs, and y is the output of the system.

To achieve steady-state flight, consider the use of a robust
controller of a linear time-invariant multivariable system [29]. First,
the error e in the system is defined as

e �t� � y � yd (26)

where yd is the input to the system, as defined in Fig. 16.
Differentiating Eqs. (24) and (25) and assuming that, if in steady

state, _yd � 0, then

d

dt
_�x�A _�x�B _u (27)

d

dt
e�C _�x (28)

Combining Eqs. (27) and (28) results in

d

dt

_�x�t�
e�t�

� �
� A 0

C 0

� �
_�x�t�
e�t�

� �
� B

0

� �
_u�t� (29)

To successfully control this system, the rank of Eq. (30) must be
considered for controllability [28]:

rank
A B
C 0

� �
� n� p (30)

where n is the order of the A matrix, and p is the order of the C
matrix.

Accordingly, it is found that only two state variables for both the
longitudinal and lateral equations of motion can be controlled.
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Therefore, controlling both forward speed and attitude and meeting
the requirements of guidance algorithm, u and � are chosen for
longitudinal motion control, with v (v� 0 to control side slip) and 
chosen for lateral motion control.

The input u for both longitudinal and lateral motions of the
controller is

u �t� � �K1 �x�t� �K2

Z
t

0

e�t� dt (31)

whereK1 andK2 are feedback gains of the controller, selected using
the pole placement method [28,30].

It should be noted that if the system is in transition, yd is not
constant. However, the system can still be controlled toward yd, as
the poles of the system never change.

C. Numerical Simulation

Figure 17 shows the block diagram of the entire system using the
proposed guidance and control laws.

Consider a formation of nine UAVs that are desired to transition
between three patterns traveling at a constant final desired speed of
11:3 ms�1 (Vtrim), assuming there is no wind. It will be assumed that
the maximum speed each UAV can travel at is 15:1 ms�1 (Vmax) and
that the minimum separation distance between the UAVs is 2 m. As
the UAV dynamics are linearized about trim flight conditions, the
desired velocity field should be chosen such that j _xdjmax �
Vmax � Vtrim. Therefore, from Eq. (14), it can be seen that

jrUS�xi�jmax � lim
jxij!1

jrUS�xi�j � 2Ch (32)

From Eq. (2), the maximum gradient of the repulsive potential is

jrUR�xi�jmax � j _xdjmax � 2Ch (33)

Knowing the desired minimum separation distance, Cr can be
chosen as follows:

Cr � Lr
j _xdjmax � 2Ch

exp��jxijjmin=Lr�
(34)

Table 2 summarizes the input parameters that were chosen to
satisfy the constraints such that the UAVs will create a double-ring
pattern and then bifurcate into an equally spaced ring pattern in the
y-x plane and then the y-z plane.

The results of the simulation are shown in Figs. 18–23. Figures 18
and 19 show the formation patterns and flight trajectory. Figures 20
and 21 indicate that the simulation satisfies the constraints made
regarding the maximum desired forward speed (j _xdj � 3:8 ms�1)
and separation distance (jxijjmin � 2 m). Figures 22 show time
histories of the state variables for an example UAV. The saturation
limits of the aircraft control surfaces are �r 
 30�, �a, �e �
25�, and

Table 2 Static bifurcation free parameters

Time, s � r Cr Lr Ch Ce Le a b c

0–100 1 8 10 1.8 1 5 9 0 0 1
100–200 0 8 10 1.8 1 5 9 0 0 1
200–300 0 8 10 1.8 1 5 9 1 0 0
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thrust �t �
1:5 N, so the system can operate within these limits.
Finally, Fig. 23 shows the time response of the controlled states on an
example UAV. The results reveal that the UAV can follow the
commands satisfactorily.

From the results shown, it can be seen that a formation of UAVs
can safely form different patterns, satisfying the assumptions made

regarding each UAV. The purpose of this section was to demonstrate
that the new methodology could be applied as a guidance algorithm
for a swarm of UAVs. As such, a simplified model of a UAV was
considered. This can be improved further by considering higher-
order models of the UAV kinematics, for example. In addition, when

0 50 100 150 200 250 300
0

0.5

1

1.5

2

Time (s)

C
om

m
an

d 
sp

ee
d,

 u
d,

i (
m

/s
)

Fig. 20 Desired commanded forward speed.

0 50 100 150 200 250 300
0

5

10

15

20

25

Time (s)

D
is

ta
nc

e 
|x

ij|
 (

m
)

|x ij|min

Fig. 21 Separation distance between UAVs.

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

12

Time (s)

S
pe

ed
s 

[m
/s

]

u
v
w

0 50 100 150 200 250 300
−15

−10

−5

0

5

10

15

Time (s)

A
ng

ul
ar

 r
at

es
 [d

eg
/s

]

p
q
r

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

4

5

6

Time (s)

E
ul

er
 a

ng
le

s 
[d

eg
]

φ
θ
ψ

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Time (s)

T
hr

us
t i

np
ut

 [N
]

δ
t

0 50 100 150 200 250 300
−5

−4

−3

−2

−1

0

1

2

3

4

Time (s)

S
ur

fa
ce

 in
pu

ts
 [d

eg
]

δ
e

δ
a

δ
r

Fig. 22 Time histories of speed, angular rate, Euler angles, and inputs (UAV 1).

1906 BENNET ETAL.



simulating the UAV system, all aspects of the UAV dynamics could
be considered. This may include the UAV structure, propulsion
system, sensors, and consideration of the atmospheric flight condi-
tions [31]. For example, an important perturbationwhen dealingwith
small UAVs is to consider the effect of wind on the system. Another
assumption made was that the communication system was ideal. As
Sigurd and How point out, although the APF method is theoretically
elegant, the assumption that all UAVs have information on all other
UAVs is unrealistic, as the number of UAVs increases [32]. Related
work has attempted to address this issue by assuming each UAVwill
have a sensing region surrounding them as opposed to the require-
ment for global knowledge [23]. It is shown that a scale separation
exists between each UAV such that it moves under the influence of a
long-range steering potential with short-range collision avoidance so
that the assumption of a sensing region could be considered valid.
Although not a rigorous proof, Tanner et al. has shown that, by using
graph theory, if the communication network between the UAVs
remains connected for all time, the system is guaranteed to relax into
the minimum of the potential [33]. Another area of future work is the
sizing of the repulsive potential to ensure that the minimum
separation distance between the UAVs is larger than the physical
dimensions. This has been considered in [23], where it was estimated
that minimum separation distance between the UAVs is dependent
upon the maximum velocity of the UAVand constants chosen in the
repulsive potential field. Therefore, as discussed, there is scope for
further improvement, and all points considered can be viewed as part
of future work.

V. Conclusions

This paper has considered a new bounded guidance law for a
swarmofUAVs.Based on the new approach of bifurcatingAPFs, it is
shown that a formation of UAVs can be successfully controlled such
that verifiable, autonomous patterns are achieved, with a simple
parameter switch allowing for the transition between patterns. In real
safety-critical applications, it is important to ensure that the vehicle
actuators are not saturated. As such, a new bounded bifurcating
potential field is developed and translated into a set of guidance
commands that control speed, heading, and pitch angle. To demon-
strate the method, the guidance law is implemented in a linearized
6-DOF fixed-wing UAV model for nine UAVs, controlled using a

robustmultisteady state variable linear time-invariant control system.
The results show that the swarm of UAVs can successfully form
patterns, switching autonomously between them through a simple
parameter switch to the potential, satisfying constraints made
regarding each UAV. To further improve the model, several assump-
tions made regarding the system will be considered in the future. For
example, it was assumed that the communication system between the
UAVs was ideal. Future work will consider the implementation of a
sensing region surrounding each UAV and its influence on the
stability of the swarm. In addition, it was assumed that there were no
external perturbations acting on eachUAVand all sensors were ideal.
The development of a control law to take this into consideration will
also be investigated.
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