Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

A local inverse spectral theorem for Hamiltonian systems

Langer, Matthias and Woracek, Harald (2011) A local inverse spectral theorem for Hamiltonian systems. Inverse Problems, 27 (5). ISSN 0266-5611

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We consider (2×2)-Hamiltonian systems of the form $y'(x) = zJH(x)y(x)$, $x \in [s−, s+)$. If a system of this form is in the limit point case, an analytic function is associated with it, namely its Titchmarsh–Weyl coefficient q_H. The (global) uniqueness theorem due to de Branges says that the Hamiltonian H is (up to reparameterization) uniquely determined by the function q_H. In this paper we give a local uniqueness theorem; if the Titchmarsh–Weyl coefficients q_{H_1} and q_{H_2} corresponding to two Hamiltonian systems are exponentially close, then the Hamiltonians H_1 and H_2 coincide (up to reparameterization) up to a certain point of their domain, which depends on the quantitative degree of exponential closeness of the Titchmarsh–Weyl coefficients.