Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Comparison of linear and nonlinear kriging methods for characterization and interpolation of soil data

Asa, Eric and Saafi, Mohamed and Membah, Joseph and Billa, Arun (2012) Comparison of linear and nonlinear kriging methods for characterization and interpolation of soil data. Journal of Computing in Civil Engineering, 26 (1). ISSN 0887-3801

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Characterization and analysis of large quantities of existing soil data represent highly complicated tasks due to the spatial correlation, uncertainty and complexity of the processes underlying soil formation. In this work, three linear kriging (simple kriging, ordinary kriging and universal kriging) and three nonlinear kriging (indicator kriging, probability kriging and disjunctive kriging) algorithms are compared to discover which is best suited for the characterization and interpolation of soil data for applications in transportation projects. A spherical model is employed as the experimental variogram to aid the spatial interpolation and cross-validation. The kriged data is subjected to leave-one-out cross-validation. The data used are in both vector and raster format. Statistical measures of correctness (mean prediction error, root-mean-square error, standardized root-mean-square error, average standard error) from the cross-validation are used to compare the kriging algorithms. Using indicator and probability kriging with the vector data set yielded the best results.