Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A subband-selective broadband GSC with cosine-modulated blocking matrix

Liu, Wei and Weiss, S. and Hanzo, L. (2004) A subband-selective broadband GSC with cosine-modulated blocking matrix. IEEE Transactions on Antennas and Propagation, 52 (3). pp. 813-820. ISSN 0018-926X

[img]
Preview
PDF
liu04d.pdf - Final Published Version

Download (985kB) | Preview

Abstract

A novel subband-selective generalized sidelobe canceller (GSC) for partially adaptive broadband beamforming is proposed. The columns of the blocking matrix are derived from a prototype vector by cosine modulation, and the broadside constraint is incorporated by imposing zeros on the prototype vector appropriately. These columns constitute a series of bandpass filters, which select signals with specific directions of arrival and frequencies. This results in a high-pass-type bandlimited spectra of the blocking matrix outputs, which is further exploited by subband decomposition and suitably discarding the low-pass subbands prior to running independent unconstrained adaptive filters in each nonredundant subband. By these steps, the computational complexity of a GSC implementation is greatly reduced compared to fully adaptive GSC schemes, while performance is comparable or even enhanced due to subband decorrelation in both spatial and temporal domains.