Picture of scraped petri dish

Scrape below the surface of Strathprints...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore world class Open Access research by researchers at Strathclyde, a leading technological university.

Explore

An experimental study of unsteady hydrodynamics of a single scull

Day, Alexander and Campbell, Ian and Clelland, David and Cichowicz, Jakub (2011) An experimental study of unsteady hydrodynamics of a single scull. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 225 (3). pp. 282-294. ISSN 1475-0902

[img]
Preview
PDF
IMechE_An_experimental_study_of_unsteady_hydro.pdf - Published Version

Download (3MB) | Preview

Abstract

The effect of hull dynamics on the hydrodynamic performance of a single scull is investigated via a combination of field trials and tank tests. The location of laminar-turbulent transition in unsteady flow is explored via several series of hot-film measurements on the bow of a full-scale single scull in unsteady flow in both towing tank and field-trial conditions. Results demonstrate that the measured real-world viscous-flow behaviour can be successfully reproduced in the tank using an oscillating sub-carriage to reproduce the surging motion measured in the field trials. It can be seen that there is a strong link between turbulence and acceleration; results show that the link is relatively insensitive to mean velocity, but that small changes in acceleration time-histories can have a marked effect, as can the presence of small waves. The impact of the location of laminar turbulent transition is investigated by way of a series of resistance tests, both with free transition and with transition forced by turbulence stimulation at two different locations. Results indicate that an aft movement of 200mm of the location of transition can reduce resistance by almost 0.5 per cent. Unsteady tests using the oscillating sub-carriage indicate that unsteady effects add around 3 per cent to the total mean resistance with free transition.