Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

A function space model for canonical systems

Langer, Matthias and Woracek, H. (2011) A function space model for canonical systems. Acta Scientiarum Mathematicarum, 77 (1-2). pp. 101-165.

[img]
Preview
PDF
asc30x2009.pdf - Preprint

Download (613kB) | Preview

Abstract

Recently, a generalization to the Pontryagin space setting of the notion of canonical (Hamiltonian) systems which involves a finite number of inner singularities has been given. The spectral theory of indefinite canonical systems was investigated with help of an operator model. This model consists of a Pontryagin space boundary triple and was constructed in an abstract way. Moreover, the construction of this operator model involves a procedure of splitting-and-pasting which is technical but at the present stage of development in general inevitable. In this paper we provide an isomorphic form of this operator model which acts in a finite-dimensional extension of a function space naturally associated with the given indefinite canonical system. We give explicit formulae for the model operator and the boundary relation. Moreover, we show that under certain asymptotic hypotheses the procedure of splitting-and-pasting can be avoided by employing a limiting process. We restrict attention to the case of one singularity. This is the core of the theory, and by making this restriction we can significantly reduce the technical effort without losing sight of the essential ideas.